39 research outputs found

    Effects of Phosphate Application Rate on Grain Yield and Nutrition Use of Summer Maize under the Coastal Saline-Alkali Land

    No full text
    Saline-alkali soil is a major threat to global food security. Phosphorus (P) fertilizer is essential for crop growth and yield production. Nevertheless, the optimal phosphate fertilizer application rates for summer maize under coastal saline–alkali soil are still unclear. A field experiment with five phosphate application rates (0, 45, 90, 135, and 180 kg ha−1, referred to as T1, T2, T3, T4, and T5, respectively) was conducted during the 2018–2020 summer maize seasons study the effects of phosphate rates on the grain yield, biomass, and nitrogen (N), P and potassium (K) accumulation, and N, P, and K physiological efficiency (denoted as NPE, PPE and KPE, respectively). Results showed that P application notably improved maize grain and biomass yield, the total uptake of N, P, K, and NPE and KPE across three seasons. As the P addition increased to 135 kg ha−1, the grain yield achieved a maximum of 7168.4 kg ha−1, with an average NPE of 2.15 kg kg−1, PPE of 0.19 kg kg−1, and KPE of 1.49 kg kg−1. However, PPE continuously decreased with the input of phosphate. P application rates exceeding 135 kg ha−1 were not considered effective due to a decline in grain yield, nutrient uptake, and NPE. Furthermore, the effect of the planting season was significant on the total uptake of N and K, and the use efficiency of N, P, and K. TOPSIS revealed that a phosphate application rate of 90–135 kg ka−1 was the optimal pattern for maize production. These results may give a theoretical basis for the phosphate management of maize production in saline–alkali soil

    Coupling Regulation of Root-Zone Soil Water and Fertilizer for Summer Maize with Drip Irrigation

    No full text
    Water scarcity is the most significant constraint for grain production in the North China Plain (NCP). Water-saving irrigation technology is a valuable tool for addressing the NCP’s water scarcity. Drip irrigation is considered as one of the most water-saving irrigation technologies. However, drip irrigation is not now commonly used in NCP field grain crops (particularly maize). Fertilizers are accurately administered to summer-maize root soil by recycling the drip-irrigation system of winter wheat. To increase the water and fertilizer-use efficiency of summer-maize fields, the coupling body of root-zone soil water and fertilizer for summer maize was thoroughly adjusted using a combination of emitter flow rate, irrigation quota, and fertilizer frequency. In this experiment, a split plot design with randomized blocks was employed. The primary plot was emitter flow rate (0.8 and 2.7 L/h), the subplot was irrigation water quota (120 and 150 m3/hm2, 1 hm2 = 10,000 m2), and the final plot was fertigation frequency (7, 14, and 28 days). The grain yield, water-use efficiency and fertilizer-use efficiency of summer maize were measured in this study. The results showed that grain yield and water-use efficiency (WUE) of the small-flow drip-irrigation treatment (emitter flow rate 1 L/h); the rates of grain yield increase were 8.2% and 13.3% and WUE were 3.5% and 8.0%, respectively. A higher irrigation quota can increase the yield of summer maize. The maximum yield and WUE were observed at the fertigation frequency of 7 days under small-flow drip-irrigation conditions. All comparisons and analyses showed that small-flow drip irrigation combined with high fertigation frequency could obtain higher yield and WUE in the NCP. This study proposes a new way to improve water and fertilizer utilization efficiency to achieve the goal of “increasing grain yield by fertilizing” and “adjusting the quality by fertilizing”, from the perspective of winter wheat–summer maize no-tillage annual rotation planting

    Effects of Different Nitrogen Allocation Ratios and Period on Cotton Yield and Nitrogen Utilization

    No full text
    Choosing the proper fertilizer regime for a crop in a given location remains challenging to increase yield, profitability, environmental growth protection, and sustainability. However, the nutrient demand characteristics of cotton in the North China Plain are different at various growth stages. Therefore, we choose the local superior cotton variety (Lumian 532) with high yield as the material, in the present study, we assessed the cotton yield, biomass accumulation and distribution, nitrogen absorption and utilization efficiency, and other parameters by setting four nitrogen allocation ratios (3:5:2, 0:10:0, 3:7:0, and 0:7:3) when the nitrogen application rates were 0, 150, 220, and 300 kg hm−2. The results showed that when the nitrogen application rate was 300 kg hm−2, the growth index, biomass, nitrogen content, and yield of Lumian 532 were the highest, while the nitrogen partial productivity (12.2 and 12.8) was the lowest. When the nitrogen application rate was 220 kg hm−2 and the nitrogen allocation ratio was 3:5:2, the agronomic nitrogen use efficiency (3.2 and 3.5) and nitrogen physiological (24.8 and 25.0) was achieved. When the nitrogen application rate was 150 kg hm−2, the nitrogen partial productivity (20.6 and 20.9) was the highest. In conclusion, the biomass accumulation and distribution, nitrogen use efficiency, yield, and yield composition of Lumian 532 could be effectively regulated by appropriate nitrogen application rate and nitrogen allocation ratio. Therefore, to optimize the yield and improve the nitrogen use efficiency, the optimal nitrogen application rate of Lumian 532 was 220 kg hm−2, and the optimal nitrogen allocation ratio was 3:5:2 in the North China Plain. The results provided practical basis for nutrient demand, cotton yield and ecological protection in different growth stages of cotton in North China Plain

    hsa_circ_0007919 induces LIG1 transcription by binding to FOXA1/TET1 to enhance the DNA damage response and promote gemcitabine resistance in pancreatic ductal adenocarcinoma

    No full text
    Abstract Background Circular RNAs (circRNAs) play important roles in the occurrence and development of cancer and chemoresistance. DNA damage repair contributes to the proliferation of cancer cells and resistance to chemotherapy-induced apoptosis. However, the role of circRNAs in the regulation of DNA damage repair needs clarification. Methods RNA sequencing analysis was applied to identify the differentially expressed circRNAs. qRT-PCR was conducted to confirm the expression of hsa_circ_0007919, and CCK-8, FCM, single-cell gel electrophoresis and IF assays were used to analyze the proliferation, apoptosis and gemcitabine (GEM) resistance of pancreatic ductal adenocarcinoma (PDAC) cells. Xenograft model and IHC experiments were conducted to confirm the effects of hsa_circ_0007919 on tumor growth and DNA damage in vivo. RNA sequencing and GSEA were applied to confirm the downstream genes and pathways of hsa_circ_0007919. FISH and nuclear-cytoplasmic RNA fractionation experiments were conducted to identify the cellular localization of hsa_circ_0007919. ChIRP, RIP, Co-IP, ChIP, MS-PCR and luciferase reporter assays were conducted to confirm the interaction among hsa_circ_0007919, FOXA1, TET1 and the LIG1 promoter. Results We identified a highly expressed circRNA, hsa_circ_0007919, in GEM-resistant PDAC tissues and cells. High expression of hsa_circ_0007919 correlates with poor overall survival (OS) and disease-free survival (DFS) of PDAC patients. Hsa_circ_0007919 inhibits the DNA damage, accumulation of DNA breaks and apoptosis induced by GEM in a LIG1-dependent manner to maintain cell survival. Mechanistically, hsa_circ_0007919 recruits FOXA1 and TET1 to decrease the methylation of the LIG1 promoter and increase its transcription, further promoting base excision repair, mismatch repair and nucleotide excision repair. At last, we found that GEM enhanced the binding of QKI to the introns of hsa_circ_0007919 pre-mRNA and the splicing and circularization of this pre-mRNA to generate hsa_circ_0007919. Conclusions Hsa_circ_0007919 promotes GEM resistance by enhancing DNA damage repair in a LIG1-dependent manner to maintain cell survival. Targeting hsa_circ_0007919 and DNA damage repair pathways could be a therapeutic strategy for PDAC
    corecore