62 research outputs found

    Bioelectromethanogenesis reaction in a tubular Microbial Electrolysis Cell (MEC) for biogas upgrading

    Get PDF
    The utilization of a pilot scale tubular Microbial Electrolysis Cell (MEC), has been tested as an innovative biogas upgrading technology. The bioelectromethanogenesis reaction permits the reduction of the CO2 into CH4 by using a biocathode as electrons donor, while the electroactive oxidation of organic matter in the bioanode partially sustains the energy demand of the process. The MEC has been tested with a synthetic wastewater and biogas by using two different polarization strategies, i.e. the three-electrode configuration, in which a reference electrode is utilized to set the potential at a chosen value, and a two-electrode configuration in which a fixed potential difference is applied between the anode and the cathode. The tubular MEC showed that the utilization of a simple two electrode configuration does not allow to control the electrodic reaction in the anodic chamber, which causes the increase of the energy consumption of the process. Indeed, the most promising performances regarding the COD and CO2 removal have been obtained by controlling the anode potential at +0.2 V vs SHE with a three electrode configuration, with an energy consumption of 0.47 kWh/kgCOD and 0.33 kWh/Nm3 of CO2 removed, which is a comparable energy consumption with respect the available technologies on the market

    Effects of the feeding solution composition on a reductive/oxidative sequential bioelectrochemical process for perchloroethylene removal

    Get PDF
    Chlorinated aliphatic hydrocarbons (CAHs) are common groundwater contaminants due to their improper use in several industrial activities. Specialized microorganisms are able to perform the reductive dechlorination (RD) of high-chlorinated CAHs such as perchloroethylene (PCE), while the low-chlorinated ethenes such as vinyl chloride (VC) are more susceptible to oxidative mechanisms performed by aerobic dechlorinating microorganisms. Bioelectrochemical systems can be used as an effective strategy for the stimulation of both anaerobic and aerobic microbial dechlorination, i.e., a biocathode can be used as an electron donor to perform the RD, while a bioanode can provide the oxygen necessary for the aerobic dechlorination reaction. In this study, a sequential bioelectrochemical process constituted by two membrane-less microbial electrolysis cells connected in series has been, for the first time, operated with synthetic groundwater, also containing sulphate and nitrate, to simulate more realistic process conditions due to the possible establishment of competitive processes for the reducing power, with respect to previous research made with a PCE-contaminated mineral medium (with neither sulphate nor nitrate). The shift from mineral medium to synthetic groundwater showed the establishment of sulphate and nitrate reduction and caused the temporary decrease of the PCE removal efficiency from 100% to 85%. The analysis of the RD biomarkers (i.e., Dehalococcoides mccartyi 16S rRNA and tceA, bvcA, vcrA genes) confirmed the decrement of reductive dechlorination performances after the introduction of the synthetic groundwater, also characterized by a lower ionic strength and nutrients content. On the other hand, the system self-adapted the flowing current to the increased demand for the sulphate and nitrate reduction, so that reducing power was not in defect for the RD, although RD coulombic efficiency was less

    Sequential Reductive/Oxidative Bioelectrochemical Process for Chlorinated Aliphatic Hydrocarbons Removal in Contaminated Groundwaters: Fluid Dynamic Characterization of the Scaled-Up Field Test

    Get PDF
    Chlorinated Aliphatic Hydrocarbons (CAHs) as Perchloroethylene (PCE) and Trichloroethylene (TCE) are worldwide contaminants due to their uncorrected disposal and storage in the past years. An effective remediation strategy for CAHs contaminated groundwaters is the stimulation of dechlorinating microorganisms which can carry out reductive and oxidative reactions that allowed for the complete mineralization of CAHs. More in detail, dehalorespiring microorganisms can reduce PCE and TCE throughout reductive dechlorination reaction (RD) a step happening reaction that remove a chlorine atom from the carbon skeleton of the molecule and replaces it with a hydrogen ion. Hence, aerobic dechlorinating microorganisms oxidize low chlorinated compounds such as cis-dichloroethylene (cDCE) and vinyl chloride (VC) into CO2 using enzymes, such as monooxygenases, to produce instable molecules with oxygen atom like epoxides. The combination of reductive and oxidative dechlorination could maximize the microbial activities allowing to work on the preferred substrates and can be easily tuned by the adoption of bioelectrochemical systems. In these electrochemical devices, an electrodic material interact with so-called electroactive microorganisms, acting like electron acceptor or donor of the microbial metabolism. In this study, a sequential reductive/oxidative bioelectrochemical process developed by the combination in series of two membrane-less microbial electrolysis cells (MECs) has been applied for the treatment of a CAHs contaminated groundwater coming from a polluted site in northern Italy. More in detail, the study presents the development and the validation of the sequential bioelectrochemical process under laboratory conditions and the and subsequent scale-up of the process for a field. The investigation of the laboratory scale performance was conducted by synthetic and real contaminated groundwater while the design and the characterization of the scaled-up process have been obtained with real contaminated in a field test. The scale-up allowed to increase the reactor volume 42 times (from 10 L to 420 L) dividing the reductive and the oxidative sections into 4 different columns with a volume of 105 L (Figure 1). The field test of the bioelectrochemical technology represents the most important scaled-up application in a bioelectrochemical system devoted to the remediation of CAHs contaminated groundwater, thus, it shows an effective solution for the stimulation of microbial activity without the utilization of any chemical in a real environment

    Metagenomic Analysis Reveals Microbial Interactions at the Biocathode of a Bioelectrochemical System Capable of Simultaneous Trichloroethylene and Cr(VI) Reduction

    Get PDF
    Bioelectrochemical systems (BES) are attractive and versatile options for the bioremediation of organic or inorganic pollutants, including trichloroethylene (TCE) and Cr(VI), often found as co-contaminants in the environment. The elucidation of the microbial players' role in the bioelectroremediation processes for treating multicontaminated groundwater is still a research need that attracts scientific interest. In this study, 16S rRNA gene amplicon sequencing and whole shotgun metagenomics revealed the leading microbial players and the primary metabolic interactions occurring in the biofilm growing at the biocathode where TCE reductive dechlorination (RD), hydrogenotrophic methanogenesis, and Cr(VI) reduction occurred. The presence of Cr(VI) did not negatively affect the TCE degradation, as evidenced by the RD rates estimated during the reactor operation with TCE (111±2 μeq/Ld) and TCE/Cr(VI) (146±2 μeq/Ld). Accordingly, Dehalococcoides mccartyi, the primary biomarker of the RD process, was found on the biocathode treating both TCE (7.82E+04±2.9E+04 16S rRNA gene copies g−1 graphite) and TCE/Cr(VI) (3.2E+07±2.37E+0716S rRNA gene copies g−1 graphite) contamination. The metagenomic analysis revealed a selected microbial consortium on the TCE/Cr(VI) biocathode. D. mccartyi was the sole dechlorinating microbe with H2 uptake as the only electron supply mechanism, suggesting that electroactivity is not a property of this microorganism. Methanobrevibacter arboriphilus and Methanobacterium formicicum also colonized the biocathode as H2 consumers for the CH4 production and cofactor suppliers for D. mccartyi cobalamin biosynthesis. Interestingly, M. formicicum also harbors gene complexes involved in the Cr(VI) reduction through extracellular and intracellular mechanisms

    Production of Short-chain Fatty Acid from CO2 Through Mixed and Pure Culture in a Microbial Electrosynthesis Cell

    Get PDF
    The continuous accumulation of atmospheric CO2 requires the development of new technologies for its mitigation. Carbon capture and utilization (CCU) technologies aim to convert CO2 into precious compounds like chemicals and fuels. Biological fixation is an attractive CCU strategy in terms of cost, sustainability and variety of products. Chemoautotrophic microorganisms such as methanogens and acetogens are able to reduce CO2 into acetate and methane, respectively. Acetogens bacteria are able to use CO2 for cell growth through the Wood Liujhundal pathway, moreover, the final precursor (i.e. Acetyl-CoA) of the autotrophic metabolism, is also used in energy metabolism with acetate production as a waste product. Furthermore, it is possible to obtain multicarbon products of autotrophic origin starting from acetyl-CoA and acetate. The biotechnological use of these microorganisms requires the presence of H2 as substrate, which is used as an electron donor in the pathway. This reaction can be sustained by a biocathode in a microbial electrosynthesis cell, in which the reducing power is generated by a polarized electrode. This study proposes the use of a microbial electrosynthesis cell for conversion to acetate in H-cells by either a mixed culture enriched with Acetobacterium woodii or a pure culture of Acetobacterium woodii, to observe the difference in terms of acetate production and reducing power consumption efficiency. The mixed culture was obtained from a mixture of activated sludge and anaerobic digestate, treated by a protocol capable to select acetogenic microorganisms without the use of specific chemical inhibitors (2-Bromoethanesulfonate). Both inoculums were tested at room temperature (25°C) in the cathodic chamber of the H-cell at potentials in the range of -0.7 to -1.1 V vs SHE. The obtained results showed that the enriched mixed culture produced at -0.7 vs SHE a mixture of volatile fatty acids including C4 and C5 molecules with an overall coulombic efficiency of 50%, while at the potential of -0.9 vs SHE methane constituted the main product of the biocathode. The pure culture, on the other hand, showed a specific production of acetate with a coulombic efficiency of 44% at -0.9 vs SHE and 63% at -1.1 vs SHE. Furthermore, a drastic decrease in biocathode biomass was observed in pure culture, suggesting a higher tendency to form biofilms on the electrode unlike the mixed culture, which showed a standard growth profile in the bulk

    Electron recycle concept in a microbial electrolysis cell for biogas upgrading

    No full text
    Abstract An innovative strategy to control the metabolism of microorganisms is offered by bioelectrochemical systems in which a graphite-based cathode can be used as electron donor or acceptor. An advanced microbial electrolysis cell is developed to combine CO2 removal from a synthetic biogas in a biocathode and the organic matter oxidation in a bioanode. A novel biogas upgrading approach is presented in which an electron recycle concept is obtained by the combination of CO2 reduction and oxidation. While the bioelectrochemical anodic chemical oxygen demand oxidation provides the electrons necessary for the cathodic CO2 reduction into methane and acetate, the acetate produced by acetogenic microorganisms migrates from the cathode to the anode being oxidized again by the bioanode

    Microbial electrolysis cell to enhance energy recovery from wastewater treatment

    No full text
    Energy intensive activate sludge treatment is the most utilized technology for municipal wastewater treatment. However, an innovative way to harvest part of the energy contained in municipal wastewater is offered by the utilization of microbial electrolysis cells (MECs). In an MEC, through the utilization of electro active microorganism, is possible to couple the oxidation organic matter with the generation of value-added reduced products, such as methane, similar to the anaerobic digestion process. MECs typically consist of a bio-anode and a (bio)-cathode separated by an ion exchange membrane (IEM). The addition of external energy usually is required to make the cathodic reaction thermodynamically feasible. Here, a continuous flow methane- producing MEC equipped with an anion exchange membrane was operated in a continuous flow mode for over 60 d at two different poised anode potentials (+ 0.20 and -0.10 V vs. standard hydrogen electrode, SHE) and with a fixed organic load rate (1.08 gCOD/Ld). The MEC showed a high COD removal efficiency (92 ± 1%), with a net energy recovery (122 ± 3 %, at -0.1 V) and low sludge production (0.09 gCOD/gCOD), making its utilization attractive in the frame of low strength wastewater treatment

    Sequential reductive/oxidative bioelectrochemical process for groundwater perchloroethylene removal

    No full text
    Chlorinated aliphatic hydrocarbons (CAHs) are common groundwater contaminants, microbial communities naturally present in groundwater can reduce CAHs as perchloroethylene (PCE) and trichloroethylene (TCE) to ethylene through reductive dechlorination (RD) reaction while low chlorinated CAHs like cis-dichloroethylene (cis DCE) and vinyl chloride (VC) can be oxidized by aerobic pathways. A combination of reductive and oxidative dechlorination results an effective strategy for the complete mineralization of CAHs. Bioelectrochemical systems (BES) are innovative processes which can be adopted to stimulate both reductive and oxidative dechlorination biomass through polarized electrodes. The present study describes the performances of a an oxidative bioelectrochemical reactor composed by a membrane-less microbial electrolysis cell (MEC) equipped with an internal graphite counterelectrode. In the oxidative reactor the oxygen provided by a mixed metal oxides (MMO) anode stimulated the oxidative dechlorination of the cisDCE contained in synthetic groundwater. Throughout the experimental period, both reductive and oxidative dechlorination pathways were identified due to presence of an internal counter electrode that acted as electron donor. Reductive and oxidative bioelectrochemical reactions, including anions reduction were determined and their relative contribution to the overall flowing current has been quantified in terms of oxidative and reductive coulombic efficiencies

    Ammonium recovery and biogas upgrading in a tubular micro-pilot microbial electrolysis cell (MEC)

    No full text
    Here, a 12-liter tubular microbial electrolysis cell (MEC) was developed as a post treatment unit for simultaneous biogas upgrading and ammonium recovery from the liquid effluent of an anaerobic digestion process. The MEC configuration adopted a cation exchange membrane to separate the inner anodic chamber and the external cathodic chamber, which were filled with graphite granules. The cathodic chamber performed the CO2 removal through the bioelectromethanogenesis reaction and alkalinity generation while the anodic oxidation of a synthetic fermentate partially sustained the energy demand of the process. Three different nitrogen load rates (73, 365, and 2229 mg N/Ld) were applied to the inner anodic chamber to test the performances of the whole process in terms of COD (Chemical Oxygen Demand) removal, CO2 removal, and nitrogen recovery. By maintaining the organic load rate at 2.55 g COD/Ld and the anodic chamber polarization at +0.2 V vs. SHE (Standard Hydrogen Electrode), the increase of the nitrogen load rate promoted the ammonium migration and recovery, i.e., the percentage of current counterbalanced by the ammonium migration increased from 1% to 100% by increasing the nitrogen load rate by 30-fold. The CO2 removal slightly increased during the three periods, and permitted the removal of 65% of the influent CO2, which corresponded to an average removal of 2.2 g CO2/Ld. During the operation with the higher nitrogen load rate, the MEC energy consumption, which was simultaneously used for the different operations, was lower than the selected benchmark technologies, i.e., 0.47 kW/N·m3 for CO2 removal and 0.88 kW·h/kg COD for COD oxidation were consumed by the MEC while the ammonium nitrogen recovery consumed 2.3 kW·h/kg N

    Anion vs cation exchange membrane strongly affect mechanisms and yield of CO2 fixation in a microbial electrolysis cell

    No full text
    The CO2 removal from a concentrated gas stream (simulating biogas) has been investigated by using two identical fully bio-catalyzed microbial electrolysis cell (MEC), equipped with either a proton exchange membrane (PEM-MEC) or an anion exchange membrane (AEM-MEC). The equivalents deriving from the anodic oxidation of the organic matter were mainly converted into current, with an average coulombic efficiency between 53 +/- 9% and 85 +/- 15%, resulting in a little microbial growth (with an observed growth yield between 0.17 and 0.18 gCOD/gCOD). The cathode compartment was continuously bubbled with a gas mixture containing CO2 (30% v/v, N-2 balance) and the presence of an hydrogenophilic autotrophic culture allowed for CO2 reduction into CH4, with a cathode capture efficiency between 47 +/- 2% and 80 +/- 1%, respectively. In both systems, the first mechanisms of CO2 removal was its sorption as bicarbonate ion at high concentration in. the MEC cathode, which was supported by alkalinity generation, needed by electroneutrality maintenance. However, in the AEM-MEC, 5.4 g/Ld of CO2 were removed by crossing the membrane (which was due to both molecular diffusion and ionic transport) whereas in the PEM-MEC only 3.2 g/Ld of CO2 were removed (through the osmotic overflow which was spilled from the cathodic liquid phase). Moreover, PEM-MEC showed higher COD removal efficiency (78 +/- 7%) and methane production rate (83 +/- 24 meq/Ld) than AEM-MEC but showed a higher energy demand per unit of removed CO2 (2.36 vs 0.78 vs kWh/Nm(3) CO2removed). It is noteworthy that AEM-MEC energy demand was lower than full scale processes for biogas upgrading such as water scrubbing. (C) 2016 Elsevier B.V. All rights reserved
    • …
    corecore