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Bioelectrochemical systems (BES) are attractive and versatile options for the bioremediation 
of organic or inorganic pollutants, including trichloroethylene (TCE) and Cr(VI), often found 
as co-contaminants in the environment. The elucidation of the microbial players’ role in 
the bioelectroremediation processes for treating multicontaminated groundwater is still a 
research need that attracts scientific interest. In this study, 16S rRNA gene amplicon 
sequencing and whole shotgun metagenomics revealed the leading microbial players and 
the primary metabolic interactions occurring in the biofilm growing at the biocathode 
where TCE reductive dechlorination (RD), hydrogenotrophic methanogenesis, and Cr(VI) 
reduction occurred. The presence of Cr(VI) did not negatively affect the TCE degradation, 
as evidenced by the RD rates estimated during the reactor operation with TCE (111 ± 2 
μeq/Ld) and TCE/Cr(VI) (146 ± 2 μeq/Ld). Accordingly, Dehalococcoides mccartyi, the 
primary biomarker of the RD process, was found on the biocathode treating both TCE 
(7.82E+04 ± 2.9E+04 16S rRNA gene copies g−1 graphite) and TCE/Cr(VI) 
(3.2E+07 ± 2.37E+0716S rRNA gene copies g−1 graphite) contamination. The metagenomic 
analysis revealed a selected microbial consortium on the TCE/Cr(VI) biocathode. D. mccartyi 
was the sole dechlorinating microbe with H2 uptake as the only electron supply mechanism, 
suggesting that electroactivity is not a property of this microorganism. Methanobrevibacter 
arboriphilus and Methanobacterium formicicum also colonized the biocathode as H2 
consumers for the CH4 production and cofactor suppliers for D. mccartyi cobalamin 
biosynthesis. Interestingly, M. formicicum also harbors gene complexes involved in the 
Cr(VI) reduction through extracellular and intracellular mechanisms.

Keywords: reductive dechlorination, Cr(VI) reduction, bioelectrochemical remediation, Dehalococcoides mccartyi, 
Methanobacterium formicicum, Methanobrevibacter arboriphilus
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INTRODUCTION

Trichloroethylene (TCE) is a toxic and persistent anthropogenic 
pollutant commonly found in groundwater and often detected 
in the aquifer with other co-contaminants, including heavy 
metals such as the carcinogenic Cr(VI) (Watts et  al., 2015). 
Despite the persistence into the environment, TCE is a 
biodegradable compound, while Cr(VI) can be  transformed 
into less toxic forms (i.e., Cr(III)).

The TCE transformation to cis-1,2-dichloroethene (cis-DCE) 
and vinyl chloride (VC) up to the harmless ethene occurs 
via the anaerobic reductive dechlorination (RD) in the presence 
of an electron donor and through the biological activity of 
specialized organohalide-respiring bacteria (OHRB; Strycharz 
et al., 2008; Löffler et al., 2013). Among them, Dehalococcoides 
mccartyi is the sole microorganism capable of performing 
RD to ethene. Thus, it is considered a robust biomarker for 
the RD monitoring and evaluation at laboratory and field 
scale (Taş et  al., 2010; Saiyari et  al., 2018). Dehalococcoides 
mccartyi strains are characterized by electron transport chain’s 
essential membrane-associated enzymes, known as reductive 
dehalogenases (RDases; Ahsanul Islam et  al., 2010; Pérez-de-
Mora et  al., 2018; Hermon et  al., 2019). Some RDases have 
been functionally characterized (i.e., TceA, VcrA, and BvcA), 
but most of them remain uncharacterized (RdhAses) among 
dechlorinating isolates or mixed cultures (Hug et  al., 2013; 
Molenda et  al., 2020). Dehalococcoides mccartyi is strictly 
anaerobic and sensitive to oxygen exposure, incapable of 
substrate fermentation as a source of electrons, and unable 
to synthesize corrinoids (i.e., cobalamin), fundamental cofactors 
for the functionality of RDases (Yan et  al., 2016; Yang et  al., 
2017). These metabolic peculiarities make D. mccartyi growth 
and RD activity favored within mixed anaerobic consortia 
where non-dechlorinating microorganisms can supply 
exogenous cofactors.

In respect of Cr(VI) remediation, anaerobic microorganisms 
capable of Cr(VI) to Cr(III) reduction (i.e., Pseudomonas 
dechloromaticans, Enterobacter cloacae, Shewanella oneidensis, 
and Clostridium chromiireducens) and with Cr(VI) tolerance 
(i.e., Bacillus sp., Leucobacter sp., Exiguobacterium sp., 
Microcococcus sp., Rhodococcus sp., Arthrobacter sp., 
Achromobacter sp., and Ochrobactrum sp.) have been reported 
(Horitsu et  al., 1987; Turick and Apel, 1997; Desai et  al., 2008; 
Sarangi and Krishnan, 2008; Elangovan et  al., 2010; Beretta 
et al., 2018; Kabir et al., 2018). Several studies also demonstrated 
that indirect Cr(VI) bioreduction is achievable through injections 
of biodegradable organic substrates that prompt anaerobic 
conditions and reductant production such as iron and sulfur 
species capable of mediating Cr(VI) reduction to Cr(III) (Kim 
et  al., 2001; Somenahally et  al., 2013; Beretta et  al., 2018, 
2019). Further, under anaerobic conditions, direct Cr(VI) 
reduction can be  mediated by membrane-bound reductases 
encoded by mtrA, mtrB, mtrC genes, and soluble enzymes 
(e.g., soluble cytochrome c3; Belchik et  al., 2011; Thatoi et  al., 
2014). Some studies also reported that Cr(VI) reduction occurs 
with H2 as electron donor and CO2 as a carbon source in 
anaerobic mixed cultures (Marsh and McInerney, 2001).

The simultaneous biodegradation of TCE and 
biotransformation of Cr(VI) to the less toxic form Cr(III) is 
a challenging remediation goal when co-contamination occurs. 
However, the available bioremediation technologies commonly 
treat TCE or Cr(VI) separately (Malaviya and Singh, 2011; 
Shukla et  al., 2014; Jin et  al., 2015; Sophia and Saikant, 2016; 
Wang et al., 2020). Among these, bioelectrochemical technologies 
emerged in the last years as the most attractive and versatile 
options being advantageous in terms of cost-effectiveness, side 
reactions control, and sustainability for in situ remediation of 
contaminated matrices (Fernando et  al., 2019; Cecconet et  al., 
2020; Wang et  al., 2020). Recently, there has been an ever-
increasing interest in biocatalyzed reduction at the cathode 
(i.e., microbial electrolysis cells, MECs) of many pollutants, 
including TCE or Cr(VI) (Palma et  al., 2018). These systems 
require an electrode acting as an electron donor (cathode), 
an electron sink (anode), and microorganisms driving reactions 
to exploit energy from toxic contaminants (Modin and Aulenta, 
2017; Ivase et  al., 2020). Several studies have demonstrated 
that MECs, under controlled potentials, may rapidly enhance 
RD by establishing dechlorinating consortia growing on the 
biocathode (Aulenta et  al., 2007, 2011; Verdini et  al., 2015; 
Zeppilli et  al., 2019). Nevertheless, despite various aspects of 
MECs for TCE dechlorination have been investigated (i.e., the 
effect of cathode potential on TCE dechlorination rate, selectivity, 
electron transfer mechanisms; Aulenta et  al., 2007, 2008, 2010, 
2011; Chen et  al., 2018; Wang et  al., 2020), only a few reports 
documented the microbial composition of the TCE-reducing 
biocathode without the addition of external carbon substrates 
(Aulenta et  al., 2010; Di Battista et  al., 2012; Wang et  al., 
2015) and even less in the case of TCE/Cr(VI) co-contamination. 
Similarly, very little is known about the microbial players of 
the bioelectrochemical systems (BES) treating Cr(VI) 
contamination. A recent study conducted at the Cr(VI)-reducing 
biocathode revealed γ-Proteobacteria as the most abundant 
electrotrophic component and, among them, also the presence 
of known chromium reducing/resistant bacteria including 
Pseudomonas sp. and Ochrobactrum sp. (Romo et  al., 2019). 
Pieces of evidence reported that the production of H2 at the 
cathode of a bioelectrochemical system could favor the 
autotrophic reduction of Cr(VI) by hydrogenotrophic bacteria.

Therefore, despite that the BES treating TCE or Cr(VI) 
have been previously described along with some biological 
data reporting the microbial players involved in the reductive 
processes, the feasibility of a bioelectrochemical system treating 
TCE in the presence of Cr(VI) as co-contaminants has been 
only recently investigated (Lai et  al., 2021). Nonetheless, the 
microbial composition and interactions occurring at the 
biocathode treating TCE/Cr(VI) co-contamination still need 
to be  analyzed. To this aim, metagenomics approaches provide 
reliable information about the key enzymes/genes involved in 
the degradation and detoxification of environmental pollutants 
to understand better the microbial community structure, 
functions, and interactions in contaminated matrices or 
engineered systems for the biological removal of pollutants, 
with implications for process optimization and bioremediation 
application at field scale (Bharagava et  al., 2019; Lapidus and 
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Korobeynikov, 2021). Metagenomic studies have been previously 
conducted on stable dechlorinating consortia to shed light on 
the metabolic features of the microbial components and their 
role in the RD processes under different conditions (Brisson 
et  al., 2012; Maphosa et  al., 2012; Dam et  al., 2017; Wang 
et al., 2019; Kucharzyk et al., 2020). Similarly, some metagenomic 
studies have also been conducted on biological systems for 
Cr(VI) removal to explore the metabolic potential, including 
Cr(VI) remediation genes, primarily in wastewater treatment 
systems or microbial consortia (Miao et  al., 2015; Sun et  al., 
2019; Pei et  al., 2020; Rahman and Thomas, 2021). To the 
best of our knowledge, no metagenomic studies have been 
conducted on a bioelectrochemical system for simultaneous 
TCE/Cr(VI) reduction.

In this study, the biofilm growing on the biocathode of a 
bioelectrochemical system capable of complete TCE-to-VC/
ethene reduction in the presence of Cr(VI) as a co-contaminant 
has been characterized for the first time. The RD process 
biomarkers, including D. mccartyi 16S rRNA and RDase genes, 
have been monitored. The metagenomic analysis has been 
performed to define the microbiome composition and metabolic 
features of the critical biological players of the processes 
occurring in the bioelectrochemical system.

MATERIALS AND METHODS

Continuous Flow Reactor: Set Up and 
Operating Conditions
The continuous flow bioelectrochemical reactor scheme for the 
TCE and Cr(VI) removal used in this study is reported in 
Figure  1. The continuous flow bioelectrochemical reactor was 
composed of a 0.821 L cathodic chamber (Figure  1A) filled 
with graphite granules (2 and 6 mm; El Carb 100, Graphite 
sales, Inc., United  States). The cathodic chamber adopted a 
graphite rod as a current collector and a 0.90 L anodic chamber 
composed of an MMO Electrode (Magneto special Anodes, 
Netherland) inserted in a silica bed (Figure  1B).

An anaerobic mineral medium (NH4Cl, 0.5; MgCl2x6H2O, 
0.1; CaCl2x2H2O, 0.05; K2HPO4, 0.4 g L−1) supplemented with 
a metal and vitamin solution was used as previously described 
(Lai et  al., 2017). The cathode and anode chambers were 
physically separated by the Nafion® 117 proton exchange 
membrane, which allowed the proton migration to maintain 
electroneutrality. An Ag/AgCl reference electrode (+0.199 vs. 
standard hydrogen electrode, SHE; Amel, Milan, Italy) placed 
in the cathode chamber permitted the polarization of the reactor 
by a potentiostat (Amel Model 549, Milan) adopting a three-
electrode configuration. Two Teflon® septa were inserted within 
the graphite granules in the cathodic chamber to obligate the 
flow direction along the total cathodic volume (Figure  1). The 
cathodic chamber was inoculated with a hydrogenophilic 
dechlorinating, while the anodic chamber was inoculated with 
an anaerobic dechlorinating mixed culture (Lai et  al., 2021). 
The continuous flow reactor was operated with the 
TCE-contaminated mineral medium (TCE 50 μM) and the 
TCE/Cr(VI)-contaminated mineral medium (Lai et  al., 2021). 

The flow rate was 0.58 l/d, corresponding to a cathodic hydraulic 
retention time (HRT) of 1.4 day. The cathodic chamber of the 
bioelectrochemical reactor was polarized at −650 mV vs. SHE. 
The average rates of RD (1) and Cr(VI) reduction (2) were 
calculated as follows:
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where [cisDCE], [VC], [ETH], and [ETA] are the average 
liquid-phase compound concentration (μM); 2, 4, 6, and 8 
are the number of moles of electrons required for the formation 
of RD intermediates from 1 mol of TCE, while 3 is the equivalent 
moles required for the reduction of Cr(VI) to Cr(III); Q is 
the flow rate (L d−1); VC is the empty volume of the cathode 
chamber (L) (i.e., the volume without the electrode).

The Coulombic efficiency (CERD) has been calculated as 
follows (3):
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where ri is the average rate of the formation of RD compounds 
or reduction of Cr(VI) (μM d−1), F is the Faraday’s constant 
(96,485 C mol eq−1), and I  is the electric current (μA; Lai 
et  al., 2021). Methane production rate (4) and its relative 
contribution to the current consumption (i.e., Coulombic 
efficiency for methane generation) (4) were assessed as follows 
(Zeppilli et  al., 2019, 2020):
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where Q is the liquid flow rate, [CH4] represents the liquid 
methane concentration calculated according to the Henry’s law 
constant at room temperature, F is the Faraday constant (i.e., 
96,485 C/mol e−), and s/d represents the seconds in a day 
(86,400 s/day).

Sampling for Biomolecular Analysis and 
DNA Extraction
Samples for biomolecular analysis were collected in triplicate 
from the biocathode treating TCE only (sample hereafter cited 
as TCE) and TCE/Cr(VI) as co-contaminants (sample hereafter 
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cited as TCE/Cr(VI)). One gram of biocathode (i.e., graphite 
granules) was collected from TCE and TCE/Cr(VI) samples. 
DNA extraction was performed with DNeasy PowerSoil Kit 
(Qiagen, Italy), following the manufacturer’s instructions. Purified 
DNA from each sample was eluted in 100 μl sterile Milli-Q 
and stored at −20°C until further biomolecular analysis.

Real-Time PCR
Dehalococcoides mccartyi 16S rRNA gene and reductive 
dehalogenase genes tceA, bvcA, vcrA were quantified via absolute 
quantification qPCR assays. TaqMan® chemistry 
(6-carboxyfluorescein-FAM at the 5' end as reporter fluorophore; 
N, N, N, N,-tetramethyl-6-carboxyrhodamine-TAMRA at the 
3' end as a quencher) was employed, and reactions were 
conducted in 20 μl total volume including 3 μl of template 
DNA, 300 nM of each primer, 300 nM TaqMan® probe and 
SsoAdvancedTM Universal Probes Supermix (Bio-Rad, Italy). 
Primers and probes used were previously reported (Ritalahti 
et  al., 2006). Standard curves for the absolute quantification 
were constructed with the long PCR amplicons of the 
targeted genes (Matturro et  al., 2013). Reactions were run in 
triplicate for each biological sample, and qPCR was 
performed with the CFX96 TouchTM Real-Time PCR 

Detection System (Bio-Rad, Italy). Quantitative data are reported 
as gene copy numbers g−1 of graphite granules.

Sequencing
The whole microbiome composition of the TCE and TCE/
Cr(VI) biocathodes was analyzed by 16S rRNA gene amplicon 
sequencing. The biomolecular analysis was expanded through 
whole shotgun metagenomic sequencing and a genome-centric 
analysis. A de novo metagenome assembly was performed on 
quality-filtered reads, and individual genomes (genome bins) 
were subsequently extracted from the assembled metagenome 
using a customized bioinformatics approach. The individual 
bins were subjected to quality assessment, taxonomic 
classification, and gene annotation. In the following, the detailed 
methods for 16S rRNA gene and shotgun metagenomic 
sequencing are reported.

16S rRNA Gene Amplicon Sequencing and 
Bioinformatics
Four nanograms of DNA extracted from TCE and TCE/Cr(VI) 
biocathode was used for NGS analysis. DNA extraction 16S 
rRNA Amplicon Library Preparation targeting the V1–3 variable 
region was constructed as previously reported (Matturro et  al., 
2017). PCR reactions were performed in 25 μl total volume 

A B

FIGURE 1 | Scheme of the continuous flow bioelectrochemical reactor for the trichloroethylene (TCE) and Cr(VI) removal. Horizontal cross section detail of the 
cathodic chamber (A) and schematic representation of the MMO (Magneto special Anodes, Netherland) electrode inserted in the silica bed (B).
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containing Phusion Master Mix High Fidelity (Thermo Fisher 
Scientific, United  States) and 0.5 μM final concentration of the 
library adaptors with V1–V3 primers (Bacteria, 27F: 
5'-AGAGTTTGATCCTGGCTCAG-3'; 534R: 5'-ATTACCGCGG 
CTGCTGG-3') and V3-V5 primers (Archaea, 340F: 5'-CCCT 
AHGGGGYGCASCA-3'; 915R: 5'-GWGCYCCCCCGYCAAT 
TC-3'). All PCR reactions were run in duplicate and pooled 
afterward. Libraries were purified using the Agencourt® AMpure 
XP-beads protocol (Beckman Coulter, Italy), and the 
concentration was measured with Qubit 3.0 Fluorometer (Thermo 
Fisher Scientific, Italy). Purified libraries were pooled in equimolar 
concentrations and diluted to 4 nM. PhiX control (15%) was 
added at 10% in the pooled libraries to overcome issues often 
observed in 16S rRNA gene sequencing. Samples were paired-end 
sequenced (2 × 301 bp) on a MiSeq (Illumina, United  States) 
instrument using a MiSeq Reagent kit v3, 600 cycles (Illumina, 
United States) following the standard guidelines. Raw data were 
processed and analyzed using QIIME2 software tools 2018.2 
release (c). The reads were demultiplexed using demux plugin1, 
denoised, dereplicated, and chimera-filtered using the DADA2 
algorithm (Callahan et  al., 2016). The taxonomic analysis was 
based on a Naïve Bayes classifier trained on 16S rRNA gene 
sequences clustered at 99% similarities within the Silva 132–99 
database (release December 2017),1 allowing to construct a 
data set of amplicon sequence variants (ASVs).

Metagenomic Sequencing and Bioinformatics
Sample DNA concentrations from TCE/Cr(VI) contaminated 
biocathode were measured using the Qubit dsDNA HS kit. 
The DNA quality and concentrations were evaluated using 
TapeStation with the Genomic ScreenTape (Agilent Technologies). 
The final concentration of 1.5 ng/μl has been used for the 
library preparation. Sequencing libraries were prepared using 
the NEB Next Ultra II DNA library prep kit for Illumina 
(New England Biolabs, United States) following the manufacturer’s 
protocol. Library concentrations were measured in triplicate 
using the Qubit dsDNA HS kit and library size estimated 
using TapeStation with D1000 HS ScreenTape. The sequencing 
libraries were pooled in equimolar concentrations and diluted 
to 4 nM. The samples were paired-end sequenced (2x301bp) 
on a MiSeq (Illumina, United  States) using a MiSeq Reagent 
kit v3, 600 cycles (Illumina, United States) following the standard 
guidelines for preparing and loading samples on the MiSeq. 
Raw Illumina reads were filtered for PhiX using Usearch11 
(Edgar, 2010) subsequently trimmed using Cutadapt v. 2.10 
(Martin, 2011). Forward and reverse reads were used to perform 
de novo assembly in megahit v. 1.2.9. The total assembly length 
of the metagenomes, the length of the longest contig, and the 
shortest contig length needed to cover 50% of the genome 
were calculated. Individual genomes (genome bins) were 
subsequently extracted from each sample metagenome in 
mmgenome2 v. 2.1.3. Bins were quality assessed with CheckM 
v. 1.1.3 (Parks et  al., 2015). Classification of bacterial bins was 
conducted with the Genome Taxonomy Database toolkit 

1 https://www.arb-silva.de/documentation/release-132/

(GTDB-TK) v. 1.3.0 (Chaumeil et al., 2019). Average nucleotide 
identities (ANI) were calculated using FastANI v. 1.32 (Goris 
et  al., 2007; Jain et  al., 2018). Genome annotations of bacterial 
and archaeal genomes were firstly conducted with Prokka v. 
1.14.6. Further, NCBI Prokaryotic Genome Annotation Pipeline 
(PGAP) was also performed for the deepest annotation. The 
Whole Genome Shotgun project was deposited at DDBJ/ENA/
GenBank under the multiple accession JADIIK000000000-
JADIIN000000000. Raw data are deposited under the SRA 
accession SRR12879946 within the BioProject PRJNA670625.

RESULTS

Performance of the Bioelectrochemical 
Reactor Operating With TCE and TCE/
Cr(VI) Contamination
In the cathodic chamber under continuous flow, the complete 
TCE removal occurred also in the presence of Cr(VI) as 
co-contaminant. The dechlorination products observed in the 
cathodic chamber fed with TCE and TCE/Cr(VI) were VC, 
ethene, and ethane (Figure  2). RD rates obtained during TCE 
and TCE/Cr(VI) operating conditions were 111 ± 2 and 146 ± 2 
μeq/Ld, respectively (Table  1).

The Coulombic efficiency (i.e., the electrons utilized by the 
dehalorespiring bacteria to reduce the chlorinated compounds, 
CE-RD) allowed for the consumption of 2.7 ± 0.1 and 4.4 ± 0.5% 
of the electric current. Bioelectrochemical CO2 reduction into 
CH4 (i.e., bioelectromethanogenesis) was observed in the cathodic 
chamber during all the operating periods with a constant 
concentration of 231 ± 1 μmol/L (Figure  2B). In particular, 
during the run with TCE and with TCE/Cr(VI), similar CH4 
production rates were observed with average values of 1,301 ± 18 
and 1,224 ± 30 μeq/Ld, respectively (Table  1). These CH4 
production rates corresponded to the consumption of 31 and 
39% of the electrical current generated by the bioelectrochemical 
cell in the TCE and TCE/Cr(VI) runs, respectively. Moreover, 
Cr(VI) was completely removed with a reduction rate of 
91.1 ± 5.2 μeq/Ld and Coulombic efficiencies (CE-Cr(VI)) of 
2.72 ± 0.19%. Overall, the CE excess estimated in the TCE-fed 
and TCE/Cr(VI) fed bioreactor was 66.3 and 53.8%, respectively.

Microbiome Composition of the TCE and 
TCE/Cr(VI) Cathodic Biofilms
The microbiome composition of the TCE and TCE/Cr(VI) 
biocathode, including Bacteria and Archaea, was firstly 
characterized through 16S rRNA gene amplicon sequencing 
(Figure  3A). On the TCE biocathode, members of Chloroflexi 
phylum (27%), including mostly D. mccartyi (21.12%), and 
Deltaproteobacteria (28.9%) affiliated to Desulfovibrio (27%), 
were mainly found. In particular, D. mccartyi detected on the 
biocathode of the bioelectrochemical reactor running with TCE 
accounted for 7.82E+04 ± 2.9E+04 16S rRNA gene copies g−1 
graphite and were mostly tceA-carrying strains (Figure  4). 
Bacteroidetes phylum represented 14% of total ASVs and included 
Lentimicrobium species (12%). Gammaproteobacteria also 
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colonized the biocathode (13%), including 7% of Rhodocyclaceae 
and 3% of Thiobacillus (Figure  3B).

Similarly, the TCE/Cr(VI) biofilm was mainly composed of 
Chloroflexi (43%), including 35.18% of D. mccartyi (Figure 3A), 
the latter accounted for 3.2E+07 ± 2.37E+07 16S rRNA gene 
copies g−1 graphite, mostly tceA-carrying strains (Figure  4). 
Moreover, Alphaproteobacteria (12%) were detected and included 
Brevundimonas (6%) and Ochrobactrum species (4%), while 
Gammaproteobacteria (8%) included Thiobacillus (1%), 
Dechlomononas (3.2%), and unidentified Rhodocyclaceae (2%). 
At a lower extent, Thermovirga of the phylum Synergistetes 
(8%), Soehngenia (2.4%), and Acidaminobacter (1.8%) of the 
phylum Firmicutes (7%) and Desulfovibrio (2.6%) within 
Deltaproteobacteria (3%) were found (Figure  3A).

As for the most representative ASVs (Supplementary Table S1) 
at the genus level (Figure 3B), D. mccartyi (ASV1), Desulfovibrio 

(ASV2), Lentimicrobium (ASV3), and Thiobacillus (ASV6) species 
were mainly found in the TCE biocathode (Figure  3B). 
Unidentified species belonging to Rhodocyclaceae (ASV4) and 
Anaerolineaceae (ASV5) families were detected among the most 
abundant ASVs of the TCE biocathode (Figure 3B). The TCE/
Cr(VI) biocathode showed a slightly modified microbial 
composition at the genus level than the reactor’s cathodic 
biofilm running only with TCE. Higher D. mccartyi relative 
abundance (ASV1) was observed (21.1% on the TCE biocathode; 
32.6% on the TCE/Cr(VI) biocathode; Figure 3B). Additionally, 
Thermovirga (ASV14), Coriobacteria OPB41 (ASV20), 
Brevundimonas (ASV24, ASV25), Ochrobactrum (ASV26), and 
Dechloromonas (ASV27) species were also detected among the 
most abundant ASVs at genus level on the TCE/Cr(VI) biocathode 
(Figure  3B). Also, Desulfovibrio (ASV2) was found abundant 
in the system, even if with differences between TCE (17%) 

A

B

FIGURE 2 | (A) Distribution of the reductive dechlorination (RD) products observed in the cathode outlet TCE and TCE/Cr(VI) operating conditions. (B) CH4 
concentrations in the cathodic effluent of the bioelectrochemical reactor during all the system’s operation periods, including the runs with TCE and TCE/Cr(VI).
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and TCE/Cr(VI) (2.4%) biocathode (Figure  3B). Interestingly, 
on the TCE/Cr(VI) biocathode, some known chromium-resistant 
bacteria, including Ochrobactrum (ASV26, 3%), Brevundimonas 
(ASV24 and ASV25, 5.71%), and Dechloromonas (ASV27, 3.17%), 
were found. Moreover, in line with CH4 formation performance 
(Table 1), the hydrogenotrophic methanogenic consortium with 
two specialized methanogens, Methanobrevibacter arboriphilus 
strain DH-1 and Methanobacterium formicicum strain MF, was 
identified both in TCE and TCE/Cr(VI) biocathodes by archaeal 
16SrRNA gene amplicon sequencing (Figure  5).

Metagenome Classification, Sequencing, 
and Assembly Statistics of the TCE/Cr(VI) 
Biocathode
The metagenomic analysis has been conducted to gain insights 
into the metabolic features of the leading microbial players 
occurring at the TCE/Cr(VI) biocathode. A total of 2,110,164 
raw DNA sequences were obtained. After the base quality 
and PhiX-filtered, a total of 2,071,082 trimmed reads before 
de novo metagenome assembly were generated (BioProject: 
PRJNA670625). The total assembly length of the TCE/Cr(VI) 
biocathode metagenome was 44.3 Mb. The TCR/Cr(VI) 
metagenome was well assembled and contained few taxa 
(Supplementary Figure S1A). Four genome bins were 
extracted based on differential abundance using a kmer-based 
tSNE approach (t-distributed stochastic neighbor embedding; 
Supplementary Figure S1B). The extracted genome bins 
included D. mccartyi (Bin 1), M. formicicum (Bin 2), 
Aeromicrobium sp. (Bin 3), and M. arboriphilus (Bin 4). General 
characteristics of the four genome bins extracted from the 
TCE/Cr(VI) biocathode are reported in Supplementary 
Tables S2 and S3. The classification against the Global Taxonomy 
Database (GTDB) was subsequently used to infer taxonomy 
for the extracted genome bins, which were nearly complete 
(95–100%) and contained low contamination levels (0–1.8%). 
In the annotated genomes, the identified cluster of orthologous 
groups of proteins (COGs) mostly fell within functional 
categories linked to metabolism, information storage 
and  processing, cellular process, and signaling 
(Supplementary Table S4; Supplementary Figure S2).  

Within the annotated coding sequences (CDSs), enzymes 
related to transferases, hydrolases, and oxidoreductases were 
the most abundant (Supplementary Figure S3).

DISCUSSION

Overview of the Microbial Player Involved 
in the Bioprocesses Occurring in the 
Bioelectrochemical System
The bioelectrochemical reactor investigated in this study allowed 
a complete TCE removal via RD. Kinetic data demonstrated 
that the addition of Cr(VI) in the system did not negatively 
affect the performance of the bioelectrochemical reactor. 
Dehalococcoides mccartyi was found on the biocathode of the 
system operating both with TCE and TCE/Cr(VI), further 
demonstrating that the addition of Cr(VI) as a co-contaminant 
did not negatively affect the RD rate nor the growth of 
D. mccartyi. As reported in Figure  2, the abundance of 
D. mccartyi estimated in the run with TCE/Cr(VI) was higher 
compared to the initial run with only TCE. This finding was 
likely due to the establishment of the optimum growth conditions 
and kinetic performance after about 200 days of operating 
conditions of the bioelectrochemical system (Figure  2).

The Coulombic efficiencies estimated in the reactor evidenced 
electron consuming mechanisms other than RD, including 
Cr(VI) to Cr(III) reduction and bioelectromethanogenesis for 
CO2 reduction into CH4. The microbiome characterization, 
including the metagenomic analysis, revealed that a specialized 
microbial community led the processes occurring in the 
bioelectrochemical system.

Dehalococcoides mccartyi was the most abundant 
microorganism found in the microbiome of the biocathode 
of the reactor operating with TCE and TCE/Cr(VI). 
Additionally, Desulfovibrio species were found. They are 
metabolically versatile microorganisms capable of anaerobic 
sulfate reduction and RD (Men et  al., 2013; Mao et  al., 
2017; Wen et  al., 2017; Lim et  al., 2018), already detected 
in TCE-consortia enriched on a variety of electron donors 
(Kotik et al., 2013). Some Desulfovibrio species (i.e., D. vulgaris 
and D. desulfuricans) were previously described as capable 
of heavy metal reduction in anaerobic environments (Franco 
et  al., 2018). Nevertheless, Desulfovibrio ASVs found in our 
study, including ASV2, ASV7, ASV8, ASV15, and ASV16 
(Supplementary Table S1), are phylogenetically affiliated to 
Desulfovibrio sulfodismutans strain ThAcO1 (GenBank: 
NR_026480.1; Blast alignment: ≥95% similarity), a 
heterotrophic microorganism capable of growth via sulfur 
disproportionation. It can also grow via sulfate reduction 
coupled to the oxidation of small organic compounds, although 
slower than disproportionation (Ward et  al., 2020). Previous 
studies highlighted the involvement of Desulfovibrio spp. in 
H2 production by direct electron uptake from the biocathode 
(Carepo et  al., 2002; Perona-Vico et  al., 2020), suggesting 
that a similar mechanism may occur in the bioelectrochemical 
system here described. The latter would be  in line with the 
CE-excess percentage estimated in the system (Table  1).

TABLE 1 | Reductive dechlorination and methanogenesis performances during 
TCE and TCE/Cr(VI) operating conditions.

TCE* TCE/Cr(VI)*

TCE load rate (μmol/Ld) 26 ± 5 38 ± 2
TCE removal efficiency 100 ± 1 100 ± 3
RD (μeq/Ld) 111 ± 2 146 ± 2
CE-RD (%) 2.7 ± 0.1 4.4 ± 0.5
CH4 production rate (μeq/Ld) 1,301 ± 18 1,224 ± 30
CE-CH4 (%) 31 ± 2 39 ± 1
Cr(VI) removal efficiency 0 100
Cr(VI) reduction rate (μeq/Ld) 0 91.1 ± 5.2
CE-Cr(VI) (%) 0 2.72 ± 0.19
CE-excess (%) 66.3 53.88

CE, Coulombic efficiency and RD, reductive dechlorination. 
*Data previously reported in Lai et al. (2021).
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In addition, on the TCE/Cr(VI) biocathode, some sequences 
affiliated with known chromium-resistant bacteria were found, 
corroborating the hypothesis that Cr(VI) reduction in the 
reactor was probably the result of the combination of both 

the applied reducing potential and microbial activity. In particular, 
Ochrobactrum, Brevundimonas, and Dechloromonas species were 
found. Among them, ASV26 (Supplementary Table S1) was 
affiliated with Ochrobactrum anthropic, a chromium-resistant 

A

B

FIGURE 3 | Microbiome composition of the cathodic biofilm at phylum level (A) and heatmap of the most abundant ASVs at genus level (B) found in the biofilm of 
the bioelectrochemical reactor treating TCE and TCE/Cr(VI).
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microorganism isolated from Cr(VI) contaminated environments 
with Cr(VI) reduction potential being a carrier of chromate 
resistance genes. Brevundimonas ASV24 and ASV25 showed 
≥99% similarity to Brevundimonas diminuta, a microorganism 
isolated from a magnetite mine drainage sample with solid 
tolerance to Cr(VI) (Lu et  al., 2011). Additionally, the 
Dechloromonas genus is known for its ability to remove multiple 
inorganic contaminants, including perchlorate, nitrate, and 
selenium (Upadhyaya et  al., 2019), and was already found as 
a dominant microorganism in anaerobic Cr(VI)-removing 
reactors (Chung et  al., 2006). Although the analysis showed 
microorganisms with tolerance and resistance capabilities to 
Cr(VI), known bacteria directly involved in Cr(VI) bioreduction 
processes were not detected.

Further, M. arboriphilus strain DH-1 and M. formicicum 
strain MF colonized the biocathode. Methanobrevibacter 
arboriphilus strain DH1 (order Methanobacteriales) is an 
autotrophic methanogen isolated from the wetwood of methane-
emitting trees (Enzmann et  al., 2018), known to grow 
hydrogenotrophically, utilizing CO2 and H2 for CH4 production 
(Zeikus and Henning, 1975). Similarly, M. formicicum is a 
hydrogenotrophic methanogen (Bryant and Boone, 1987), and 
it has been previously reported with M. arboriphilus in a 
bioelectrochemical methanogenic reactor (Sasaki et  al., 2013). 
Interestingly, previous studies evidenced that together with the 
reduction of CO2 to CH4 by H2 oxidation, Cr(VI) reduction 
might also be led by methanogens in the presence of specialized 
electron transfer complex, especially when H2 (or direct electrons) 
are not limiting in the environment (Viti et  al., 2014).

Overall, gene amplicon sequencing provided an overview of 
the microbial player involved in the bioprocesses (i.e., RD, 

hydrogenotrophic methanogenesis, and Cr(VI) reduction) occurring 
in the bioelectrochemical system here reported. D. mccartyi led 
TCE-dechlorination. In contrast, Desulfovibrio sp. may be involved 
in bioelectrochemical H2 production. Further, M. arboriphilus 
and M. formicicum are primarily engaged in hydrogenotrophic 
CH4 production and might play a role in Cr(VI) reduction.

Metabolic Features of D. mccartyi and 
Methanogens in the TCE/Cr(VI) Biocathode
Metagenomic analysis conducted on the biofilm growing on 
the TCE/Cr(VI) biocathode reported organochloride respiration 
and hydrogenotrophic methanogenesis as the driving processes 
occurring in the bioelectrochemical system. A selected microbial 
consortium established on the biocathode was highlighted and 
included the most relevant dechlorinating microorganism 
D. mccartyi and the hydrogenotrophic methanogens 
M. arboriphilus and M. formicicum. In line with the 16S rRNA 
gene amplicon sequencing data, metagenomic investigations 
did not provide evidence for the presence of the known 
chromium reducing bacteria directly involved in the Cr(VI) 
to Cr(III) reduction, strengthening the hypothesis that 
hydrogenotrophic methanogens may be  responsible for Cr(VI) 
reduction at the biocathode. Several studies conducted on the 
metabolic pathways of interest (i.e., cobalamin synthesis, 
methionine synthesis, oxygen scavenging, hydrogen production, 
and electron donor metabolism) of stable dechlorinating mixed 
cultures (i.e., dechlorinating cultures: KB1, ANAS, DonnaII) 
demonstrated that the presence of non-dechlorinating 
microorganisms, including methanogens, is essential to sustain 
anaerobic RD processes and D. mccartyi growth (Men et  al., 
2013). In particular, methanogens are crucial for D. mccartyi 

FIGURE 4 | Quantification of 16S rRNA of Dehalococcoides mccartyi and strain-specific RDase genes conducted on the samples from the operating conditions 
with TCE and TCE/Cr(VI). Data are plotted in log scale (base 10).
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functionality to provide essential metabolites, including 
corrinoids, and often act as oxygen scavengers. Indeed, despite 
that methanogens have been often considered hydrogen 
competitors, several pieces of evidence suggested that this 
assumption may not be applicable in particular when electrons 
are exceeded (Hug et  al., 2012). This is the case of the 
bioelectrochemical reactor here reported where unrecovered 
reducing power accounted for 53.9% in the TCE/Cr(VI) system 
(Table  1). It is conceivable that interactions instead of 
competitions were established between D. mccartyi and 
hydrogenotrophic methanogens based on kinetic and 
metagenomic data. We screened the annotated genomes extracted 
from TCE/Cr(VI) biocathode, mainly focusing on the primary 
metabolic features, including RDases as fundamental for the 
RD process, corrinoid compounds as an essential cofactor for 
the corresponding RDases, and on the hydrogenases as crucial 
enzymes for H2 metabolism in D. mccartyi. The analysis included 
also the annotated genomes of M. formicicum and M. arboriphilus 
as H2 consumers for CH4 production, cofactor suppliers to 
D. mccartyi for cobalamin biosynthesis, and Cr(VI) reducers.

RDases of D. mccartyi From TCE/Cr(VI) 
Biocathode
Among the 1,471 CDSs with proteins of the TCE/Cr(VI) 
biocathode D. mccartyi extracted genome, a total of 29 

dehalogenase genes have been annotated (Table  2), including 
13 reductive dehalogenase genes (rdhA) predicted to encode 
the catalytically active enzyme (RdhA), one rdhB gene encoding 
the membrane anchor protein, additional 14 genes coding for 
dehalogenase hypothetical proteins, and one gene encoding a 
haloacid dehalogenase (GenPept: MBF4482892).

The annotated dehalogenases have been run against the Reductive 
Dehalogenase Database2 recently released and based on the 
orthologous sequence similarity (i.e., Ortholog Groups, OGs; Hug 
et al., 2013; Molenda et al., 2020). Remarkably, none of the putative 
reductive dehalogenases encoding proteins shared 100% identity 
with those identified in the database (Table  2). The rdhB gene 
encoding the membrane anchor protein shared 100% similarity 
to the TCE reductive dehalogenase membrane-anchoring subunit 
RdhB (NCBI Reference Sequence: WP_010935885.1), already found 
in several D. mccartyi species (Table  2). Diversely, most of the 
rdhA genes found encoding the catalytically active enzyme showed 
uncharacterized functions, except for the MBF4482477 RdhA with 
99.8% of similarity to DET1545 – highly expressed during starvation 
in D. mccartyi 195 – and the MBF4482271 RdhA with similarity 
≥98% to the genes KB1338_1 (from KB-1 consortium) and 
Dm11a5_1352 (D. mccartyi strain 11a5) that corresponded to 
the TceA catalytic subunit (Table  2). Interestingly, this protein 
showed only 96.57% of similarity to the gene DET0079_tceA of 
D. mccartyi 195. Among the RdhA found, five shared high 
similarities (from 98.2 to 99.6%) to known enzymes already 
detected in D. mccartyi 195, including DET152, DET1528, DET1535, 
DET1545, and DET1538 (Table  2). We  also found RdhAses 
(GenPept: MBF4481741, MBF4481742, MBF4481741, MBF4481742, 
MBF4482271) similar to those already found in D. mccartyi strains 
VS, UCH-ATV1 and 11a5 (8658308VS, 658312VS, DEHALATV1_
RS06695, DEHALATV1_RS06700, Dm11a5_1352). The rdhA genes 
of these strains were found embedded in distinct genomic islands 
with different predicted integration sites (i.e., 8658308VS, 8658312VS; 
McMurdie et  al., 2009), or reported in genomes where genomic 
rearrangement occurred during culturing (i.e., DEHALATV1_
RS06695, DEHALATV1_RS06700; Yohda et  al., 2017) or found 
in D. mccartyi strain (11a5) with circular extrachromosomal genetic 
elements allowing gene mobilization/horizontal transfer (Zhao 
et  al., 2017). Overall, in these strains, gene mobilization occurs. 
The reductive dehalogenase genes mobilization may occur by 
distinct mechanisms, and recent studies showed that CRISPR-Cas 
(Clustered Regularly Interspaced Short Palindromic Repeats – 
CRISPR associated) system might play a role in D. mccartyi genes 
transfer (Molenda et  al., 2019). Interestingly, D. mccartyi from 
TCE/Cr(VI) biocathode is a CRISPR-containing genome 
(Supplementary Table S3) harboring one CRISPR array with 
genes coding for the CRISPR-Cas system (Table  3). CRISPR is 
an adaptive immune system constituted by one or more CRISPR 
arrays (i.e., AT-rich leader sequence followed by short repeats of 
21–48 bp that are separated by unique spacers of 26–76 bp, 
homologous to sequences in mobile genetic elements) and several 
CRISPR-associated (cas) genes: When “invading” genetic elements 
are identified in the genome, CRISPR-Cas system interferes by 
adding these elements to the CRISPR array.

2 https://rdasedb.biozone.utoronto.ca/

FIGURE 5 | Archaea composition of the cathodic biofilm in the reactor 
operating with TCE and TCE/Cr(VI).
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Till now, only five out of 24 total D. mccartyi genomes 
sequenced so far have been reported to contain CRISPR-Cas 
genes (strains GT, CBDB1, DCMB5, KBVC1, and KBDCA3), 
mostly coding for the Class I  type I-E system (Huo et  al., 2014; 
Makarova et  al., 2015), involved in facilitating or blocking the 
lateral transfer of rdhAB genes among D. mccartyi strains. To 
date, only Molenda et  al. (2019) investigated D. mccartyi 
CRISPR-Cas systems, demonstrating that phages and integrative 
or mobile elements (IMEs) are the most common targets through 
a site-specific integration in the DNA and that transcriptional 
regulator (i.e., XRE, LexA, or Cro/IC family) and translocases 
(i.e., Ftsk/SpoIIIE domain) are involved in this DNA modification 
system. The analysis of the CRISPR-Cas systems across a growing 
set of Dehalococcoides genomes enabled the discovery of different 
types of actively replicating extrachromosomal elements targeted 
by CRISPR-Cas and associated with the mobilization of rdh 
genes that are often located in genomic islands (GIs) and appear 
to have been acquired horizontally (i.e., vcrAB operon, bvcA 
gene; Molenda et al., 2019). These findings explain the common 
occurrence of a higher rdhA/16S rRNA gene copies ratio, mostly 

found in DNA samples from environmental samples (Molenda 
et  al., 2019). In the annotated D. mccartyi genome from the 
TCE/Cr(VI) biocathode, genes linked to CRISPR-associated 
helicase/endonuclease (GenPept: MBF4481735), type I-E CRISPR-
associated protein Cse1/CasA (GenPept: MBF4481736), type I-E 
CRISPR-associated endoribonuclease Cas2 (GenPept: 
MBF4481737) and to CRISPR-associated helicase Cas3 (GenPept: 
MBF4482064) were found (Table  3). They shared only low 
similarity (from 45.18 to 98.45%) to CRISPR-associated proteins 
previously characterized in other D. mccartyi strains. The only 
regulator gene of the CRISPR-Cas system found in D. mccartyi 
from the TCE/Cr(VI) biocathode is the LexA family transcriptional 
regulator (GenPept: MBF4482400), already present in the majority 
of D. mccartyi strains. These findings, together with the occurrence 
of rdhA genes with high similarity to those already found in 
strains where rdhA mobilization and/or horizontal transfers were 
reported, suggest that also the genome of D. mccartyi extracted 
from the TCE/Cr(VI) biocathode may harbor metabolic features 
linked to gene mobilization. However, additional genome walking, 
including the searching for extrachromosomal DNA, and 

TABLE 2 | Reductive dehalogenase genes annotated in the genome of D. mccartyi extracted from the TCE/Cr(VI) biocathode.

GenPept accession 
number

Identity (%) Similar reductive 
dehalogenases

D. mccartyi strain Ortholog group Characterized function

MBF4481786 99.60 DET152 195 33 None
MBF4481792 98.20 DET1528 195 75 None
MBF4481797 98.40 DET1535 195 34 None
MBF4482477 99.80 DET1545 195 15 Expressed during starvation
MBF4482483 99.40 DET1538 195 17 None
MBF4481809 99.80 CG4_X793_RS06795 CG4 10 None
MBF4481838 94.50 CG4_X793_RS06825 CG4 17 None
MBF4482084 99.20 MB_rdhA5 MB nd None
MBF4481750 96.20 8658308VS* VS 19 None
MBF4481754 95.90 8658312VS* VS 40 None
MBF4481741 99.60 DEHALATV1_RS06695** UCH-ATV1 76 None
MBF4481742 96.20 DEHALATV1_RS06700** UCH-ATV1 81 None

MBF4482271 (RdhA)
99.64 Dm11a5_1352*** 11a5 5 TceA – catalytic subunit
98.38 KB1338_1 KB-1 consortium 5 TceA – catalytic subunit
96.57 DET0079_tceA 195 5 TceA – catalytic subunit

MBF4482272 100 rdhB Multispecies -
reductive dehalogenase membrane-
anchoring subunit RdhB

Other hypothetical dehalogenases, uncharacterized:
GenPept accession 
number

MBF4481743, MBF4481749, MBF4481753, MBF4481785, MBF4481791, MBF4481796, MBF4481808, MBF4482083, MBF4482154, 
MBF4482216, MBF4482478, MBF4482484, MBF4481814, and MBF4481844

*Genes found embedded in distinct genomic islands (GEIs) with different predicted integration sites, suggesting that these genes were acquired horizontally and independently by 
distinct mechanisms (McMurdie et al., 2009).
**Genes found in Dehalococcoides sp. genome where genomic rearrangement occurred during culture (Yohda et al., 2017).
***Gene from D. mccartyi strain 11a5 where a circular extrachromosomal genetic element and a new tetrachloroethene reductive dehalogenase gene were found (Zhao et al., 2017).

TABLE 3 | Genes linked to the CRISPR-system found in D. mccartyi from the TCE/Cr(VI) biocathode.

GenPept accession number Identity (%) RefSeq selected product Description D. mccartyi strain

MBF4481735 98.45 WP_046961576.1 CRISPR-associated helicase/endonuclease Cas3 UCH007 and CG3
MBF4481736 45.18 WP_046961409.1 type I-E CRISPR-associated protein Cse1/CasA UCH007 and CG3

MBF4481737 88.68 WP_012984524.1
type I-E CRISPR-associated endoribonuclease 
Cas2

CBDB1, GT, DCMB5, 11a5, 
KBVC1, SG1, JNA, RC, KS, and GT

MBF4482064 96.65 WP_046961576.1 CRISPR-associated helicase Cas3 UCH007 and CG3
MBF4482400 100 WP_012882749.1 LexA family transcriptional regulator Multistrain
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FIGURE 6 | Upstream (KEGG: M00924) and downstream (KEGG: M00122) corrinoid biosynthesis pathways of vitamin B12 coenzyme.

comparative genomic studies are necessary to gain more insights 
into this important metabolic feature of the D. mccartyi strain 
extracted from the biocathode here described.

Corrinoid Synthesis in D. mccartyi and Cofactors 
Supply From Methanobacterium formicicum and 
Methanobrevibacter arboriphilus
Cobalamins, including vitamin B12, are corrinoid-based essential 
cofactors for the activity of RDases (Yan et  al., 2016). Indeed, 
RDases are iron–sulfur clusters and cobalamin-containing 
membrane-bound components of the electron transfer chain that 

catalyze the H2-dependent dechlorination of the substrates (Seshadri 
et  al., 2005). Nevertheless, it is well known that D. mccartyi is 
incapable of de novo cobalamin biosynthesis, and all strains harbor 
only genes involved in the downstream corrinoid biosynthesis 
pathway, from cobyrinate a, c diamide to vitamin B12 coenzyme 
(KEGG pathway: M00122). Thus, D. mccartyi is a corrinoid 
auxotroph microorganism that needs cobamide-producing microbes 
to supply the required corrinoid cofactors: This implies that the 
co-presence of non-dechlorinating members (mostly fermentative 
and/or acetogenic bacteria and/or methanogens) is essential for 
D. mccartyi growth (Yan et al., 2016; Yang et al., 2017). This feature 
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makes it capable of scavenging metabolites (i.e., cofactors) from 
other microorganisms present in the same environment, such 
as methanogenic Archaea, and transport them into the cell. 
Metagenomics and kinetic performances suggest that in the TCE/
Cr(VI) biocathode, RD activity driven by D. mccartyi was also 
sustained by corrinoid-producing hydrogenotrophic methanogens 
M. arboriphilus and M. formicicum. They can perform the upstream 
corrin ring biosynthesis from uroporphyrinogen III to 
sirohydrochlorin and finally to cobyrinate a,c-diamide (KEGG 
pathway: M00924), a precursor of the vitamin B12 coenzyme. 
The simplified pathway for the upstream (KEGG: M00924) and 
downstream (KEGG: M00122) corrinoid biosynthesis pathways 
of vitamin B12 coenzyme is reported in Figure  6.

Methanobrevibacter arboriphilus and M. formicicum genomes 
extracted from the biocathode harbor all the anaerobic 
cobalamin’s genes biosynthesis pathway from uroporphyrinogen 
III to sirohydrochlorin and finally to cobyrinate a,c-diamide 
(KEGG pathway: M00924), as a precursor of the vitamin B12 
coenzyme. The first gene involved in this pathway is cysG, 
followed by genes cbi (cbiC, cbiD, cbiE, cbiG, cbiL, cbiM, cbiQ, 
and cbiT), cfbA, and cob (cobI, cobM, cobJ, cobK, cobH, and 
cobB). Diversely, in the TCE/Cr(VI) biocathode D. mccartyi 
genome, cob genes (cobC, cobD, cobU, cobS, cobT, and cobN 
genes, Table  4) were found.

They typically encode proteins involved in the anaerobic 
cobalamin synthesis (KEGG pathway: M00122; Yan et  al., 2016). 
cbiD and cbiE genes were also found: They are involved in the 
KEGG pathway M00924, from co-precorrin 5B to co-precorrin-6A 
and from co-precorrin-7 to co-precorrin-8 (Figure  6), and are 
present in some D. mccartyi strains (IBARAKI, DCMB5, CBDB, 

MB, FL2, 11a5, and CG1/4/5) and ANAS consortium (Brisson 
et  al., 2012). Remarkably, we  also found cobH, cobI, cobJ, and 
cobM genes (Table  4). These genes are typical of the upstream 
aerobic corrin ring synthesis pathway (KEGG pathway: M00925) 
from precorrin-2 to cobyrinate a,c-diamide. Nevertheless, a recent 
study showed that cbi genes in the anaerobic pathway are 
orthologous to cob genes in the aerobic pathway and are not 
exclusive to genomes with the aerobic or anaerobic pathways 
(Shelton et al., 2019). Therefore, the authors suggested that aerobic 
or anaerobic corrin ring biosynthesis pathways cannot 
be distinguished based on their annotated gene content, presumably 
because portions of the two pathways share orthologous genes. 
Additionally, B12-binding component BtuF of the vitamin B12 
transporter has been found in the D. mccartyi genome from the 
TCE/Cr(VI) biocathode. Our findings suggest that in the TCE/
Cr(VI) biocathode, M. formicicum and M. arboriphilus play a 
role in D. mccartyi growth by sustaining the complete cobalamin 
synthesis pathway (Figure  6).

H2 Metabolism
Dehalococcoides mccartyi can exclusively use H2 as an electron 
donor for the anaerobic dechlorination making H2 metabolism 

TABLE 4 | Genes involved in the anaerobic cobalamin synthesis pathway in the 
genome of D. mccartyi from TCE/Cr(VI) biocathode.

GenPept accession 
number

Gene Function

MBF4482113 cbiE Precorrin-6y C5,15-methyltransferase 
(decarboxylating) subunit CbiE

MBF4481778 cbiD Cobalt-precorrin-5B (C(1))-
methyltransferase

MBF4481765 cobH Precorrin-8X methylmutase
MBF4481776 cobI Precorrin-2 C(20)-methyltransferase
MBF4481774 cobJ Precorrin-3B C(17)-methyltransferase
MBF4481775 cobM Precorrin-4 C(11)-methyltransferase
MBF4482814 cobC Alpha-ribazole phosphatase 

[Dehalococcoides mccartyi]
MBF4482117 cobD Cobalamin biosynthesis protein CobD
MBF4482815 cobU Bifunctional adenosylcobinamide kinase/

adenosylcobinamide-phosphate 
guanylyltransferase

MBF4482813 cobS Adenosylcobinamide-GDP 
ribazoletransferas

MBF4482812 cobT Nicotinate-nucleotide--
dimethylbenzimidazole 
phosphoribosyltransferase

MBF4481784 cobN Cobaltochelatase subunit CobN
MBF4482806 btuF Vitamin B12 ABC transporter, B12-

binding component BtuF

These genes are involved in the lower part of the cobalamin biosynthesis from cob(II)
yrinate a,c, diamide to Vitamin B12 coenzyme (KEGG).

TABLE 5 | Genes encoding hydrogenases in D. mccartyi from TCE/Cr(VI) 
biocathode.

GenPept accession 
number

Gene Function

MBF4481889 hypA Hydrogenase maturation nickel 
metallochaperone HypA

MBF4481888 hypB Hydrogenase nickel incorporation 
protein HypB

MBF4481885 hypD Hydrogenase formation protein HypD
MBF4481884 hypE Hydrogenase expression/formation 

protein HypE
MBF4481887 hypF Hydrogenase maturation factor HypF
MBF4483122 hyaD/hybD HyaD/HybD family hydrogenase 

maturation endopeptidase
MBF4482458 hycC Hydrogenase membrane subunit
MBF4481886 hypC/hybG/hupF HypC/HybG/HupF family 

hydrogenase formation chaperone
MBF4483158 hymD [Fe] hydrogenase, HymD subunit
MBF4483157 hymC [Fe] hydrogenase, small subunit
MBF4482774 vhuA Ni/Fe hydrogenase subunit alpha
MBF4482773 vhuG Methyl viologen-reducing 

hydrogenase VhuG
MBF4482967 echE Ni-dependent hydrogenase large 

subunit
MBF4482820 cdhC CO dehydrogenase/CO-methylating 

acetyl-CoA synthase complex 
subunit beta

MBF4482137 FrhB/FdhB Coenzyme F420 hydrogenase/
dehydrogenase, beta subunit 
C-terminal domain

MBF4483124 - Ni/Fe hydrogenase small subunit 
hydrogenase

MBF4482460 - Hydrogenase-4 component E
MBF4482775* - Hydrogenase maturation protease
MBF4482461* - Hydrogenase membrane subunit
MBF4483123* - Ni-dependent hydrogenase large 

subunit

*No similar proteins were found in other D. mccartyi strains.
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fundamental for its physiology. Dehalococcoides mccartyi 
commonly harbors genes encoding five different hydrogenase 
complexes such as cytoplasmic (Vhu) and four membrane-
bound (Hup, Hyc, Ech, and Hym) hydrogenases (Kube et  al., 
2005; Seshadri et  al., 2005; Morris et  al., 2007; Schipp et  al., 
2013). Most of them are [NiFe]-hydrogenases, while the H2-
uptake (Hup) hydrogenase is a [Fe]-hydrogenase, the main 
enzyme involved in H2-driven organohalide respiration (Seshadri 
et  al., 2005). The Hup enzyme involves a direct transfer of 
the electrons derived from H2 oxidation via protein–protein 
interactions, including ferredoxin-like proteins, which resemble 
electron-transferring subunits of oxidoreductases (Kublik et al., 
2016; Hartwig et  al., 2017; Seidel et  al., 2018). In line with 
the general metabolic features of D. mccartyi, in the genome 
extracted from the TCE/Cr(VI) biocathode, hydrogenase 
complexes Hyp, Hyc, Hym, Vhu, and Ech were found (Table 5).

In detail, genes encoding protein subunits linked to membrane-
bound [Ni-Fe]-hydrogenase included hyc genes (hycC/hybG) 
encoding the formate hydrogenlyase subunits of the membrane-
bound hydrogenase, and hyp genes (hypD, hypE, hypB, and hypD) 
encoding the carbamoyl dehydratase (HypE), carbamoyltransferase 
(HypF) subunits and the hydrogenase maturation factors (HypB 
and HypD). Additionally, hyb genes (hybB, hybD, and hybF) 
encoding the putative [Ni-Fe]-hydrogenase 2 b-type cytochrome 
subunit (HybB), the hydrogenase 2 maturation protease (HybD), 
and the hydrogenase maturation factor (HybF) were detected. 
hydB gene encoding the periplasmic [Ni-Fe]-hydrogenase large 
subunit and hyf genes (hyfB and hyfG) encoding the hydrogenase-4 
components were also present. Vhu and Ech enzymes were found, 
the latter probably involved in generating the low-potential electrons 

for biosynthesis rather than being involved with organohalide 
respiration (Morris et al., 2007). Moreover, the gene cdhC encoding 
the CO dehydrogenase/CO-methylating acetyl-CoA synthase 
complex (GenPept: MBF4482820) and the genes frhB/fhdB encoding 
the coenzyme F420 hydrogenase/dehydrogenase complex (GenPept: 
MBF4482137) were also present in the TCE/Cr(VI) biocathode 
D. mccartyi genome (Table  5). Additionally, in line with the 
bioelectromethanogenesis occurring in the system, all the genes 
involved in CH4 formation from H2 and CO2 (KEGG pathway: 
M00567) were found in the annotated genomes of M. arboriphilus 
and M. formicicum (Table  6).

Cr(VI)-to-Cr(III) Bioreduction
Cr(VI) to Cr(III) reduction occurring in the bioelectrochemical 
system resulted from the combination of both the applied reducing 
potential and microbial activity. Nevertheless, amplicon sequencing 
showed only the presence of AVS26 (3%) affiliated with the 
known Cr(VI) resistant Ochrobactrum, and bacteria linked to 
direct Cr(VI) reduction were not detected. Interestingly, previous 
studies reported that extracellular Cr(VI) reduction might occur 
with H2 as an electron donor in the presence of hydrogenases 
and through the action of c-type cytochromes and membrane 
reductase, such as the mtrCAB complex, essential components 
for extracellular electron transfer (Marsili et al., 2008; von Canstein 
et  al., 2008). Previous studies demonstrated that this Cr(VI) 
reduction mechanism, together with the reduction of CO2 to 
methane by H2 oxidation, might be  led by methanogens in the 
presence of the electron transfer c-cytochrome/mtrCAB complex, 
especially when H2 (or direct electrons) are not limiting in the 
environment (Viti et  al., 2014; Singh et  al., 2015). In line with 
these previous reports, we  found that M. formicicum genome of 
the TCE/Cr(VI) biocathode harbors genes encoding c-cytochrome 
(GenPept: MBF4475800) and mtrCAB complex (GenPept: 
MBF4473862, MBF4474248, MBF4473860; Table  6). Diversely, 
M. arboriphilus from the TCE/Cr(VI) biocathode harbors genes 
encoding mtrCAB complex, but no cytochromes have been found 
in the annotated genome. Additionally, intracellular Cr(VI) 
reduction mechanisms have been reported in methanogens in 
the presence of H2 as electron donor and with available transport 
systems for inorganic solutes formed by the ABC family of the 
ATP-dependent transporters. This system allows Cr(VI) transport 
into the cells, mainly if moderate Cr(VI) concentrations are 
present in the medium to avoid the cytotoxic effect. Thus, Cr(III) 
reduction occurs within the cell by proteins similar to NADPH-
dependent FMN reductase in Methanobacterium sp. (NCBI 
accession number: YP_004518865; Smith et al., 1997). Interestingly, 
in the TCE/Cr(VI) biocathode M. formicicum genome, we  found 
16 genes encoding ABC-transporter ATP-dependent, 17 genes 
encoding ABC-transporter permeases, and one metal ABC 
transporter permease in addition to the gene npdG encoding 
the NADPH-dependent F420 reductase (GenPept: MBF4475652). 
Diversely, in the M. arboriphilus genome of the TCE/Cr(VI) 
biocathode, 11 genes encoding ABC-transporter ATP-dependent 
and 10 genes encode the ABC-transporter permeases were found 
(Table 6). At the same time, no NADPH-dependent F420 reductase 
was present. These findings suggested that M. formicicum on 
the TCE/Cr(VI) biocathode may be responsible for the extracellular 

TABLE 6 | Genes involved in the CH4 formation pathway from H2 and CO2 
(KEGG: M00567) found in the annotated genome of Methanobacterium 
formicicum (GenBank: JADIIL000000000) and Methanobrevibacter arboriphilus 
(GenBank: JADIIN000000000) from the TCE/Cr(VI) biocathode and the 
corresponding functions.

Gene Function

fwdA,B,C,D Formylmethanofuran dehydrogenase subunits A, C, B, D
fdhD, fdhF Formate dehydrogenase
mob Molybdopterin-guanine dinucleotide biosynthesis protein 

B
ftr, fhcD Formylmethanofuran--tetrahydromethanopterin 

N-formyltransferase
mch Methenyltetrahydromethanopterin cyclohydrolase
mer 5,10-methylenetetrahydromethanopterin reductase
mtd F420-dependent methylenetetrahydromethanopterin 

dehydrogenase
mcrA, mcrB, mcrG Coenzyme-B sulfoethylthiotransferase subunits alpha 

(A), beta (B), gamma (G)
mcrC, mcrD1, mcrD2 Methyl-coenzyme M reductase I operon protein C, D1, 

D2
mtrA, mtrC, mtrD, 
mtrE, mtrF, mtrG, 
mtrH

Tetrahydromethanopterin S-methyltransferase subunits 
A, C, D, E, F, G, H

frhA, frhB, frhG, frhD Coenzyme F420 hydrogenase subunit alpha(A), beta(B), 
gamma(G); coenzyme F420-reducing hydrogenase 
FrdhD

mvhA/mvhG F420-non-reducing hydrogenases
hdrB, hdrC CoB-CoM heterodisulfide reductase subunits B, C

https://www.frontiersin.org/journals/microbiology
www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Matturro et al. Metagenome of TCE/Cr(VI) Reducing Biochatode

Frontiers in Microbiology | www.frontiersin.org 15 September 2021 | Volume 12 | Article 747670

and/or intracellular hydrogenotrophic Cr(VI) reduction, together 
with hydrogenotrophic CH4 production.

CONCLUSION

The present study reported the microbial and (meta)genomic 
characterization of a bioelectrochemical system treating TCE- and 
TCE/Cr(VI)-contaminated water, allowing to elucidate the microbial 
interactions occurring at the biofilm growing on the cathode 
(Figure  7). The main processes occurring in the system were 
RD, hydrogenotrophic methanogenesis, and Cr(VI) reduction. 
The genomic and metagenomic analysis of the microbial community 
growing at the biocathode allowed the identification of the 

key-microbial players: D. mccartyi as the unique OHRB, 
Desulfovibrio as H2 producer, M. formicicum, and M. arboriphilus 
as H2 consumers for CH4 production, cofactor suppliers for 
cobalamin biosynthesis and Cr(VI) reducers. D. mccartyi genome 
extracted from the TCE/Cr(VI) biocathode showed high similarity 
with D. mccartyi 195 even if it harbors several uncharacterized 
RdhAse, including some similar to those found in D. mccartyi 
strains with IMEs (VS, UCH-ATV1, and 11a5), and genes involved 
in the CRISPR-Cas system. These findings suggest that the genome 
of D. mccartyi extracted from the TCE/Cr(VI) biocathode may 
harbor metabolic features linked to rdhA gene mobilization. 
Further genomic and/or transcriptomic evaluation is necessary 
to gain more insights into the gene-transfer capabilities. Concerning 
the H2 uptake, D. mccartyi genome analysis confirmed this as 

FIGURE 7 | Microbial interactions revealed at the biocathode of the bioelectrochemical system where RD, hydrogenotrophic methanogenesis, and Cr(VI) reduction occur.
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the only electron supply mechanism. As the genome lacks systems 
for the direct electron transfer into the cell (i.e., cytochromes), 
most likely electroactivity is not a property of D. mccartyi. Pure 
culture studies are necessary to fulfil this hypothesis.

The role of hydrogenotrophic methanogens M. formicicum 
and M. arboriphilus in supporting the growth of D. mccartyi 
has been here highlighted. Indeed, the presence of a complete 
cobalamin synthesis pathway represents an essential supply of 
corrinoid-based crucial cofactors for the activity of RDases in 
D. mccartyi. Further, evidence of Cr(VI) to Cr(III) reduction 
mediated by M. formicicum in the TCE/Cr(VI) biocathode has 
been reported. Indeed, optimal conditions (i.e., H2 availability 
and moderate Cr(VI) concentration) and the presence of 
c-cytochrome/mtrCAB complex in the annotated genome suggested 
that M. formicicum harbors the metabolic feature for extracellular 
Cr(VI) reduction. Additionally, the metabolic potential for 
intracellular Cr(VI) reduction in M. formicicum is also sustained 
by the presence in the genome of genes encoding transport 
systems for inorganic solutes, and NADPH-dependent reductases, 
whose involvement in Cr(VI) reduction has been already reported 
in Cr(VI)-reducing bacteria (i.e., Shewanella sp.).
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