484 research outputs found

    Next-to-leading order QCD corrections to Z boson pair production via vector-boson fusion

    Get PDF
    Vector-boson fusion processes are an important tool for the study of electroweak symmetry breaking at hadron colliders, since they allow to distinguish a light Higgs boson scenario from strong weak boson scattering. We here consider the channels WW->ZZ and ZZ->ZZ as part of electroweak Z boson pair production in association with two tagging jets. We present the calculation of the NLO QCD corrections to the cross sections for p p -> e+ e- mu+ mu- + 2 jets and p p -> e+ e- nu_mu nubar_mu + 2 jets via vector-boson fusion at order alpha_s alpha^6, which is performed in the form a NLO parton-level Monte Carlo program. The corrections to the integrated cross sections are found to be modest, while the shapes of some kinematical distributions change appreciably at NLO. Residual scale uncertainties typically are at the few percent level.Comment: 12 pages, 4 figure

    Di-boson Production beyond NLO QCD and Anomalous Couplings

    Full text link
    In these proceedings, we review results for several di-boson production processes beyond NLO QCD at high transverse momenta using the VBFNLO Monte-Carlo program together with the LOOPSIM method. Additionally, we show for the WZ production process how higher order QCD corrections can resemble anomalous coupling effects.Comment: Conference Proceedings:C15-05-25.

    The Precision of Higgs Boson Measurements and Their Implications

    Get PDF
    The prospects for a precise exploration of the properties of a single or many observed Higgs bosons at future accelerators are summarized, with particular emphasis on the abilities of a Linear Collider (LC). Some implications of these measurements for discerning new physics beyond the Standard Model (SM) are also discussed.Comment: Summary report of the Precision Higgs Working Group P1WG2 at Snowmass 200

    Z\gamma\gamma production with leptonic decays and triple photon production at NLO QCD

    Full text link
    We present a calculation of the O(alpha_s) QCD corrections to the production of a Z boson in association with two photons and to triple photon production at hadron colliders. All final-state photons are taken as real. For the Z boson, we consider the decays both into charged leptons and into neutrinos including all off-shell effects. Numerical results are obtained via a Monte Carlo program based on the structure of the VBFNLO program package. This allows us to implement general cuts and distributions of the final-state particles. We find that the NLO QCD corrections are sizable and significantly exceed the expectations from a scale variation of the leading-order result. In addition, differential distributions of important observables change considerably. The prediction of two-photon-associated Z production with Z decays into neutrinos from the charged-lepton rate works well, once we use an additional cut on the invariant mass of the charged-lepton pair.Comment: 14 pages, 10 figures, 2 table

    Determination of Higgs-boson couplings at the LHC

    Full text link
    We investigate the determination of Higgs boson couplings to gauge bosons and fermions at the LHC from data on Higgs boson production and decay. We demonstrate that very mild theoretical assumptions, which are valid in general multi-Higgs doublet models, are sufficient to allow the extraction of absolute values of the couplings rather than just ratios of the couplings. For Higgs masses below 200 GeV we find accuracies of 10-40% for the Higgs couplings and the total Higgs boson width after several years of LHC running. The sensitivity of the Higgs coupling measurements to deviations from the Standard Model predictions is studied for an MSSM scenario.Comment: 9 pages, contribution to the proceedings of the XXXIXth Rencontres de Moriond, La Thuile, March 200

    Continuous Centrifuge Decelerator for Polar Molecules

    Full text link
    Producing large samples of slow molecules from thermal-velocity ensembles is a formidable challenge. Here we employ a centrifugal force to produce a continuous molecular beam with a high flux at near-zero velocities. We demonstrate deceleration of three electrically guided molecular species, CH3_3F, CF3_3H, and CF3_3CCH, with input velocities of up to 200ms1200\,\rm{m\,s^{-1}} to obtain beams with velocities below 15ms115\,\rm{m\,s^{-1}} and intensities of several 109mm2s110^9\,\rm{mm^{-2}\,s^{-1}}. The centrifuge decelerator is easy to operate and can, in principle, slow down any guidable particle. It has the potential to become a standard technique for continuous deceleration of molecules.Comment: 5 pages, 4 figures; version accepted for publication in PR

    Preprint arXiv: 2205.04327 Submitted on 9 May 2022

    Get PDF

    b-quark decay in the collinear approximation

    Get PDF
    The semileptonic decay of a b-quark, b--> c l nu, is considered in the relativistic limit where the decay products are approximately collinear. Analytic results for the double differential lepton energy distributions are given for finite charm-quark mass. Their use for the fast simulation of isolated lepton backgrounds from heavy quark decays is discussed.Comment: 7 pages, 1 figure, submitted to Phys.Rev.
    corecore