51 research outputs found
The 2HWC HAWC Observatory Gamma Ray Catalog
We present the first catalog of TeV gamma-ray sources realized with the
recently completed High Altitude Water Cherenkov Observatory (HAWC). It is the
most sensitive wide field-of-view TeV telescope currently in operation, with a
1-year survey sensitivity of ~5-10% of the flux of the Crab Nebula. With an
instantaneous field of view >1.5 sr and >90% duty cycle, it continuously
surveys and monitors the sky for gamma ray energies between hundreds GeV and
tens of TeV.
HAWC is located in Mexico at a latitude of 19 degree North and was completed
in March 2015. Here, we present the 2HWC catalog, which is the result of the
first source search realized with the complete HAWC detector. Realized with 507
days of data and represents the most sensitive TeV survey to date for such a
large fraction of the sky. A total of 39 sources were detected, with an
expected contamination of 0.5 due to background fluctuation. Out of these
sources, 16 are more than one degree away from any previously reported TeV
source. The source list, including the position measurement, spectrum
measurement, and uncertainties, is reported. Seven of the detected sources may
be associated with pulsar wind nebulae, two with supernova remnants, two with
blazars, and the remaining 23 have no firm identification yet.Comment: Submitted 2017/02/09 to the Astrophysical Journa
Observation of the Crab Nebula with the HAWC Gamma-Ray Observatory
The Crab Nebula is the brightest TeV gamma-ray source in the sky and has been
used for the past 25 years as a reference source in TeV astronomy, for
calibration and verification of new TeV instruments. The High Altitude Water
Cherenkov Observatory (HAWC), completed in early 2015, has been used to observe
the Crab Nebula at high significance across nearly the full spectrum of
energies to which HAWC is sensitive. HAWC is unique for its wide field-of-view,
nearly 2 sr at any instant, and its high-energy reach, up to 100 TeV. HAWC's
sensitivity improves with the gamma-ray energy. Above 1 TeV the
sensitivity is driven by the best background rejection and angular resolution
ever achieved for a wide-field ground array.
We present a time-integrated analysis of the Crab using 507 live days of HAWC
data from 2014 November to 2016 June. The spectrum of the Crab is fit to a
function of the form . The data is well-fit with values of
, , and
log when
is fixed at 7 TeV and the fit applies between 1 and 37 TeV. Study of the
systematic errors in this HAWC measurement is discussed and estimated to be
50\% in the photon flux between 1 and 37 TeV.
Confirmation of the Crab flux serves to establish the HAWC instrument's
sensitivity for surveys of the sky. The HAWC survey will exceed sensitivity of
current-generation observatories and open a new view of 2/3 of the sky above 10
TeV.Comment: Submitted 2017/01/06 to the Astrophysical Journa
Daily monitoring of TeV gamma-ray emission from Mrk 421, Mrk 501, and the Crab Nebula with HAWC
We present results from daily monitoring of gamma rays in the energy range
to TeV with the first 17 months of data from the High
Altitude Water Cherenkov (HAWC) Observatory. Its wide field of view of 2
steradians and duty cycle of % are unique features compared to other TeV
observatories that allow us to observe every source that transits over HAWC for
up to hours each sidereal day. This regular sampling yields
unprecedented light curves from unbiased measurements that are independent of
seasons or weather conditions. For the Crab Nebula as a reference source we
find no variability in the TeV band. Our main focus is the study of the TeV
blazars Markarian (Mrk) 421 and Mrk 501. A spectral fit for Mrk 421 yields a
power law index and
an exponential cut-off
TeV. For Mrk 501, we find an index and exponential cut-off TeV. The light curves for both sources show clear
variability and a Bayesian analysis is applied to identify changes between flux
states. The highest per-transit fluxes observed from Mrk 421 exceed the Crab
Nebula flux by a factor of approximately five. For Mrk 501, several transits
show fluxes in excess of three times the Crab Nebula flux. In a comparison to
lower energy gamma-ray and X-ray monitoring data with comparable sampling we
cannot identify clear counterparts for the most significant flaring features
observed by HAWC.Comment: 18 pages, 10 figures, accepted for publication in The Astrophysical
Journa
The Sensitivity of HAWC to High-Mass Dark Matter Annihilations
The High Altitude Water Cherenkov (HAWC) observatory is a wide field-of-view
detector sensitive to gamma rays of 100 GeV to a few hundred TeV. Located in
central Mexico at 19 degrees North latitude and 4100 m above sea level, HAWC
will observe gamma rays and cosmic rays with an array of water Cherenkov
detectors. The full HAWC array is scheduled to be operational in Spring 2015.
In this paper, we study the HAWC sensitivity to the gamma-ray signatures of
high-mass (multi- TeV) dark matter annihilation. The HAWC observatory will be
sensitive to diverse searches for dark matter annihilation, including
annihilation from extended dark matter sources, the diffuse gamma-ray emission
from dark matter annihilation, and gamma-ray emission from non-luminous dark
matter subhalos. Here we consider the HAWC sensitivity to a subset of these
sources, including dwarf galaxies, the M31 galaxy, the Virgo cluster, and the
Galactic center. We simulate the HAWC response to gamma rays from these sources
in several well-motivated dark matter annihilation channels. If no gamma-ray
excess is observed, we show the limits HAWC can place on the dark matter
cross-section from these sources. In particular, in the case of dark matter
annihilation into gauge bosons, HAWC will be able to detect a narrow range of
dark matter masses to cross-sections below thermal. HAWC should also be
sensitive to non-thermal cross-sections for masses up to nearly 1000 TeV. The
constraints placed by HAWC on the dark matter cross-section from known sources
should be competitive with current limits in the mass range where HAWC has
similar sensitivity. HAWC can additionally explore higher dark matter masses
than are currently constrained.Comment: 15 pages, 4 figures, version to be published in PR
Extended gamma-ray sources around pulsars constrain the origin of the positron flux at Earth
The unexpectedly high flux of cosmic ray positrons detected at Earth may
originate from nearby astrophysical sources, dark matter, or unknown processes
of cosmic-ray secondary production. We report the detection, using the
HighAltitude Water Cherenkov Observatory (HAWC), of extended tera-electron volt
gamma-ray emission coincident with the locations of two nearby middle-aged
pulsars (Geminga and PSR B0656+14). The HAWC observations demonstrate that
these pulsars are indeed local sources of accelerated leptons, but the measured
tera-electron volt emission profile constrains the diffusion of particles away
from these sources to be much slower than previously assumed. We demonstrate
that the leptons emitted by these objects are therefore unlikely to be the
origin of the excess positrons, which may have a more exotic origin.Comment: 16 pages (including supplementary material), 5 figure
Search for very-high-energy emission from Gamma-ray Bursts using the first 18 months of data from the HAWC Gamma-ray Observatory
The High Altitude Water Cherenkov (HAWC) Gamma-ray Observatory is an
extensive air shower detector operating in central Mexico, which has recently
completed its first two years of full operations. If for a burst like GRB
130427A at a redshift of 0.34 and a high-energy component following a power law
with index -1.66, the high-energy component is extended to higher energies with
no cut-off other than from extragalactic background light attenuation, HAWC
would observe gamma rays with a peak energy of 300 GeV. This paper
reports the results of HAWC observations of 64 gamma-ray bursts (GRBs) detected
by and , including three GRBs that were also
detected by the Large Area Telescope (-LAT). An ON/OFF analysis
method is employed, searching on the time scale given by the observed light
curve at keV-MeV energies and also on extended time scales. For all GRBs and
time scales, no statistically significant excess of counts is found and upper
limits on the number of gamma rays and the gamma-ray flux are calculated. GRB
170206A, the third brightest short GRB detected by the Gamma-ray Burst Monitor
on board the satellite (-GBM) and also
detected by the LAT, occurred very close to zenith. The LAT measurements can
neither exclude the presence of a synchrotron self-Compton (SSC) component nor
constrain its spectrum. Instead, the HAWC upper limits constrain the expected
cut-off in an additional high-energy component to be less than
for reasonable assumptions about the energetics and redshift of the burst.Comment: 19 pages, 6 figures, published in Ap
VAMOS: a Pathfinder for the HAWC Gamma-Ray Observatory
VAMOS was a prototype detector built in 2011 at an altitude of 4100m a.s.l.
in the state of Puebla, Mexico. The aim of VAMOS was to finalize the design,
construction techniques and data acquisition system of the HAWC observatory.
HAWC is an air-shower array currently under construction at the same site of
VAMOS with the purpose to study the TeV sky. The VAMOS setup included six water
Cherenkov detectors and two different data acquisition systems. It was in
operation between October 2011 and May 2012 with an average live time of 30%.
Besides the scientific verification purposes, the eight months of data were
used to obtain the results presented in this paper: the detector response to
the Forbush decrease of March 2012, and the analysis of possible emission, at
energies above 30 GeV, for long gamma-ray bursts GRB111016B and GRB120328B.Comment: Accepted for pubblication in Astroparticle Physics Journal (20 pages,
10 figures). Corresponding authors: A.Marinelli and D.Zaboro
- …