1,199 research outputs found

    Mechanized fluid connector and assembly tool system with ball detents

    Get PDF
    A fluid connector system is disclosed which includes a modified plumbing union having a rotatable member for drawing said union into a fluid tight condition. A drive tool is electric motor actuated and includes a reduction gear train providing an output gear engaging an integral peripheral spur gear on the rotatable member. Coaxial alignment means are attached to both the connector assembly and the drive tool. A hand lever actuated latching system includes a plurality of circumferentially spaced latching balls selectively wedged against the alignment means attached to the connector assembly or to secure the drive tool with its output gear in mesh with the integral peripheral spur gear. The drive motor is torque, speed, and direction controllable

    A Study of Differences in Calculated Capacity when Using Single-, Mixed- or Multiple-Bounce GSCM Schemes

    Get PDF
    The paper looks for differences in MIMO system capacity when using either single-, mixed-, or multiple-bounce geometry based stochastic channel models (GSCMs). The investigation considers Saleh-Valenzuela temporal indoor model, expanded for angular domain. In the model omnidirectional and idealized sector antennas were used as array elements. The single-bounce assumption, combination of single and multiple bounces, and pure random multiple bounces assumption were compared within “temporally identical” environment regarding the overall MIMO capacity. Assumption of clustered scatterers/reflectors is used in all three cases. The comparison is performed in statistical sense, using a large number of stochastically generated temporal models. The model is two- dimensional, i.e. neither elevation angle nor polarization/ depolarization was considered

    Effects of Unstable Dark Matter on Large-Scale Structure and Constraints from Future Surveys

    Full text link
    In this paper we explore the effect of decaying dark matter (DDM) on large-scale structure and possible constraints from galaxy imaging surveys. DDM models have been studied, in part, as a way to address apparent discrepancies between the predictions of standard cold dark matter models and observations of galactic structure. Our study is aimed at developing independent constraints on these models. In such models, DDM decays into a less massive, stable dark matter (SDM) particle and a significantly lighter particle. The small mass splitting between the parent DDM and the daughter SDM provides the SDM with a recoil or "kick" velocity vk, inducing a free-streaming suppression of matter fluctuations. This suppression may be probed via weak lensing power spectra measured by a number of forthcoming imaging surveys that aim primarily to constrain dark energy. Using scales on which linear perturbation theory alone is valid (multipoles < 300), surveys like Euclid or LSST can be sensitive to vk > 90 km/s for lifetimes ~ 1-5 Gyr. To estimate more aggressive constraints, we model nonlinear corrections to lensing power using a simple halo evolution model that is in good agreement with numerical simulations. In our most ambitious forecasts, using multipoles < 3000, we find that imaging surveys can be sensitive to vk ~ 10 km/s for lifetimes < 10 Gyr. Lensing will provide a particularly interesting complement to existing constraints in that they will probe the long lifetime regime far better than contemporary techniques. A caveat to these ambitious forecasts is that the evolution of perturbations on nonlinear scales will need to be well calibrated by numerical simulations before they can be realized. This work motivates the pursuit of such a numerical simulation campaign to constrain dark matter with cosmological weak lensing.Comment: 15 pages, 7 figures. Submitted to PR

    Cold Dark Matter Substructure and Galactic Disks I: Morphological Signatures of Hierarchical Satellite Accretion

    Get PDF
    (Abridged) We conduct a series of high-resolution, dissipationless N-body simulations to investigate the cumulative effect of substructure mergers onto thin disk galaxies in the context of the LCDM paradigm of structure formation. Our simulation campaign is based on a hybrid approach. Substructure properties are culled directly from cosmological simulations of galaxy-sized cold dark matter (CDM) halos. In contrast to what can be inferred from statistics of the present-day substructure populations, accretions of massive subhalos onto the central regions of host halos, where the galactic disk resides, since z~1 should be common occurrences. One host halo merger history is subsequently used to seed controlled numerical experiments of repeated satellite impacts on an initially-thin Milky Way-type disk galaxy. We show that these accretion events produce several distinctive observational signatures in the stellar disk including: a ring-like feature in the outskirts; a significant flare; a central bar; and faint filamentary structures that (spuriously) resemble tidal streams. The final distribution of disk stars exhibits a complex vertical structure that is well-described by a standard ``thin-thick'' disk decomposition. We conclude that satellite-disk encounters of the kind expected in LCDM models can induce morphological features in galactic disks that are similar to those being discovered in the Milky Way, M31, and in other disk galaxies. These results highlight the significant role of CDM substructure in setting the structure of disk galaxies and driving galaxy evolution. Upcoming galactic structure surveys and astrometric satellites may be able to distinguish between competing cosmological models by testing whether the detailed structure of galactic disks is as excited as predicted by the CDM paradigm.Comment: Accepted version to appear in ApJ, 24 pages, 8 figures, LaTeX (uses emulateapj.cls). Comparison between the simulated ring-like features and the Monoceros ring stellar structure in the Milky Way performed; conclusions unaltere
    • …
    corecore