32 research outputs found

    Landau singularities and singularities of holonomic integrals of the Ising class

    Full text link
    We consider families of multiple and simple integrals of the ``Ising class'' and the linear ordinary differential equations with polynomial coefficients they are solutions of. We compare the full set of singularities given by the roots of the head polynomial of these linear ODE's and the subset of singularities occurring in the integrals, with the singularities obtained from the Landau conditions. For these Ising class integrals, we show that the Landau conditions can be worked out, either to give the singularities of the corresponding linear differential equation or the singularities occurring in the integral. The singular behavior of these integrals is obtained in the self-dual variable w=s/2/(1+s2)w= s/2/(1+s^2), with s=sinh(2K)s= \sinh(2K), where K=J/kTK=J/kT is the usual Ising model coupling constant. Switching to the variable ss, we show that the singularities of the analytic continuation of series expansions of these integrals actually break the Kramers-Wannier duality. We revisit the singular behavior (J. Phys. A {\bf 38} (2005) 9439-9474) of the third contribution to the magnetic susceptibility of Ising model χ(3)\chi^{(3)} at the points 1+3w+4w2=01+3w+4w^2= 0 and show that χ(3)(s)\chi^{(3)}(s) is not singular at the corresponding points inside the unit circle s=1| s |=1, while its analytical continuation in the variable ss is actually singular at the corresponding points 2+s+s2=0 2+s+s^2=0 oustside the unit circle (s>1| s | > 1).Comment: 34 pages, 1 figur

    Square lattice Ising model susceptibility: connection matrices and singular behavior of χ(3)\chi^{(3)} and χ(4)\chi^{(4)}

    Full text link
    We present a simple, but efficient, way to calculate connection matrices between sets of independent local solutions, defined at two neighboring singular points, of Fuchsian differential equations of quite large orders, such as those found for the third and fourth contribution (χ(3)\chi^{(3)} and χ(4)\chi^{(4)}) to the magnetic susceptibility of square lattice Ising model. We deduce all the critical behaviors of the solutions χ(3)\chi^{(3)} and χ(4)\chi^{(4)}, as well as the asymptotic behavior of the coefficients in the corresponding series expansions. We confirm that the newly found quadratic number singularities of the Fuchsian ODE associated to χ(3)\chi^{(3)} are not singularities of the particular solution χ(3)\chi^{(3)} itself. We use the previous connection matrices to get the exact expressions of all the monodromy matrices of the Fuchsian differential equation for χ(3)\chi^{(3)} (and χ(4)\chi^{(4)}) expressed in the same basis of solutions. These monodromy matrices are the generators of the differential Galois group of the Fuchsian differential equations for χ(3)\chi^{(3)} (and χ(4)\chi^{(4)}), whose analysis is just sketched here. As far as the physics implications of the solutions are concerned, we find challenging qualitative differences when comparing the corrections to scaling for the full susceptibillity χ\chi at high temperature (resp. low temperature) and the first two terms χ(1)\chi^{(1)} and χ(3)\chi^{(3)} (resp. χ(2)\chi^{(2)} and χ(4)\chi^{(4)}) .Comment: 38 pages, no figure Note added in the proof

    The diagonal Ising susceptibility

    Full text link
    We use the recently derived form factor expansions of the diagonal two-point correlation function of the square Ising model to study the susceptibility for a magnetic field applied only to one diagonal of the lattice, for the isotropic Ising model. We exactly evaluate the one and two particle contributions χd(1)\chi_{d}^{(1)} and χd(2)\chi_{d}^{(2)} of the corresponding susceptibility, and obtain linear differential equations for the three and four particle contributions, as well as the five particle contribution χd(5)(t){\chi}^{(5)}_d(t), but only modulo a given prime. We use these exact linear differential equations to show that, not only the russian-doll structure, but also the direct sum structure on the linear differential operators for the n n-particle contributions χd(n)\chi_{d}^{(n)} are quite directly inherited from the direct sum structure on the form factors f(n) f^{(n)}. We show that the nth n^{th} particle contributions χd(n)\chi_{d}^{(n)} have their singularities at roots of unity. These singularities become dense on the unit circle sinh2Ev/kTsinh2Eh/kT=1|\sinh2E_v/kT \sinh 2E_h/kT|=1 as n n\to \infty.Comment: 18 page

    High order Fuchsian equations for the square lattice Ising model: χ(6)\chi^{(6)}

    Full text link
    This paper deals with χ~(6)\tilde{\chi}^{(6)}, the six-particle contribution to the magnetic susceptibility of the square lattice Ising model. We have generated, modulo a prime, series coefficients for χ~(6)\tilde{\chi}^{(6)}. The length of the series is sufficient to produce the corresponding Fuchsian linear differential equation (modulo a prime). We obtain the Fuchsian linear differential equation that annihilates the "depleted" series Φ(6)=χ~(6)23χ~(4)+245χ~(2)\Phi^{(6)}=\tilde{\chi}^{(6)} - {2 \over 3} \tilde{\chi}^{(4)} + {2 \over 45} \tilde{\chi}^{(2)}. The factorization of the corresponding differential operator is performed using a method of factorization modulo a prime introduced in a previous paper. The "depleted" differential operator is shown to have a structure similar to the corresponding operator for χ~(5)\tilde{\chi}^{(5)}. It splits into factors of smaller orders, with the left-most factor of order six being equivalent to the symmetric fifth power of the linear differential operator corresponding to the elliptic integral EE. The right-most factor has a direct sum structure, and using series calculated modulo several primes, all the factors in the direct sum have been reconstructed in exact arithmetics.Comment: 23 page

    Painleve versus Fuchs

    Full text link
    The sigma form of the Painlev{\'e} VI equation contains four arbitrary parameters and generically the solutions can be said to be genuinely ``nonlinear'' because they do not satisfy linear differential equations of finite order. However, when there are certain restrictions on the four parameters there exist one parameter families of solutions which do satisfy (Fuchsian) differential equations of finite order. We here study this phenomena of Fuchsian solutions to the Painlev{\'e} equation with a focus on the particular PVI equation which is satisfied by the diagonal correlation function C(N,N) of the Ising model. We obtain Fuchsian equations of order N+1N+1 for C(N,N) and show that the equation for C(N,N) is equivalent to the NthN^{th} symmetric power of the equation for the elliptic integral EE. We show that these Fuchsian equations correspond to rational algebraic curves with an additional Riccati structure and we show that the Malmquist Hamiltonian p,qp,q variables are rational functions in complete elliptic integrals. Fuchsian equations for off diagonal correlations C(N,M)C(N,M) are given which extend our considerations to discrete generalizations of Painlev{\'e}.Comment: 18 pages, Dedicated to the centenary of the publication of the Painleve VI equation in the Comptes Rendus de l'Academie des Sciences de Paris by Richard Fuchs in 190

    Globally nilpotent differential operators and the square Ising model

    Full text link
    We recall various multiple integrals related to the isotropic square Ising model, and corresponding, respectively, to the n-particle contributions of the magnetic susceptibility, to the (lattice) form factors, to the two-point correlation functions and to their lambda-extensions. These integrals are holonomic and even G-functions: they satisfy Fuchsian linear differential equations with polynomial coefficients and have some arithmetic properties. We recall the explicit forms, found in previous work, of these Fuchsian equations. These differential operators are very selected Fuchsian linear differential operators, and their remarkable properties have a deep geometrical origin: they are all globally nilpotent, or, sometimes, even have zero p-curvature. Focusing on the factorised parts of all these operators, we find out that the global nilpotence of the factors corresponds to a set of selected structures of algebraic geometry: elliptic curves, modular curves, and even a remarkable weight-1 modular form emerging in the three-particle contribution χ(3) \chi^{(3)} of the magnetic susceptibility of the square Ising model. In the case where we do not have G-functions, but Hamburger functions (one irregular singularity at 0 or \infty) that correspond to the confluence of singularities in the scaling limit, the p-curvature is also found to verify new structures associated with simple deformations of the nilpotent property.Comment: 55 page

    Renormalization, isogenies and rational symmetries of differential equations

    Full text link
    We give an example of infinite order rational transformation that leaves a linear differential equation covariant. This example can be seen as a non-trivial but still simple illustration of an exact representation of the renormalization group.Comment: 36 page

    The saga of the Ising susceptibility

    Full text link
    We review developments made since 1959 in the search for a closed form for the susceptibility of the Ising model. The expressions for the form factors in terms of the nome qq and the modulus kk are compared and contrasted. The λ\lambda generalized correlations C(M,N;λ)C(M,N;\lambda) are defined and explicitly computed in terms of theta functions for M=N=0,1M=N=0,1.Comment: 19 pages, 1 figur

    The Ising model and Special Geometries

    Full text link
    We show that the globally nilpotent G-operators corresponding to the factors of the linear differential operators annihilating the multifold integrals χ(n)\chi^{(n)} of the magnetic susceptibility of the Ising model (n6n \le 6) are homomorphic to their adjoint. This property of being self-adjoint up to operator homomorphisms, is equivalent to the fact that their symmetric square, or their exterior square, have rational solutions. The differential Galois groups are in the special orthogonal, or symplectic, groups. This self-adjoint (up to operator equivalence) property means that the factor operators we already know to be Derived from Geometry, are special globally nilpotent operators: they correspond to "Special Geometries". Beyond the small order factor operators (occurring in the linear differential operators associated with χ(5) \chi^{(5)} and χ(6) \chi^{(6)}), and, in particular, those associated with modular forms, we focus on the quite large order-twelve and order-23 operators. We show that the order-twelve operator has an exterior square which annihilates a rational solution. Then, its differential Galois group is in the symplectic group Sp(12,C) Sp(12, \mathbb{C}). The order-23 operator is shown to factorize in an order-two operator and an order-21 operator. The symmetric square of this order-21 operator has a rational solution. Its differential Galois group is, thus, in the orthogonal group SO(21,C) SO(21, \mathbb{C}).Comment: 33 page
    corecore