104 research outputs found

    Hypidone Hydrochloride (YL-0919) Produces a Fast-Onset Reversal of the Behavioral and Synaptic Deficits Caused by Chronic Stress Exposure

    Get PDF
    Our previous study showed that hypidone hydrochloride (YL-0919), a partial serotonin 1A (5-HT1A) receptor agonist and 5-HT reuptake inhibitor, exerts a significant antidepressant effect in various animal models. The aim of the present study was to further investigate the underlying mechanisms and whether it could act as a fast-onset antidepressant. In the current study, depressive-like behavior was induced in rats by a chronic unpredictable stress (CUS) model and assessed with the Sucrose Preference Test (SPT). Treatment with YL-0919 (2.5 mg/kg, i.g.), but not with fluoxetine (Flx; 10 mg/kg, i.g.), caused a fast improvement in the SPT scores. In CUS-exposed rats, YL-0919 treatment for 5 days decreased the immobility time in a forced swimming test (FST), and a 10-day treatment decreased the latency to feed in a Novelty-Suppressed Feeding Test (NSFT). In addition to the behavioral tests, the effects of YL-0919 on synaptic protein expression were also evaluated. Western blotting showed that YL-0919 significantly enhanced the expression levels of synaptic proteins such as synapsin I, postsynaptic density protein 95 (PSD95), phosphorylated mammalian targeting of rapamycin (pmTOR) and brain-derived neurotrophic factor (BDNF) in the hippocampus. To determine how the mTOR signaling is involved in the fast-onset antidepressant-like effects of YL-0919, the mTOR-specific inhibitor rapamycin was administered intracerebroventricularly (i.c.v.) together with the YL-0919 treatment. The observed changes in behavioral tests and protein expression could be reversed by rapamycin treatment. This suggests that the fast-onset antidepressant effects of YL-0919 were partially caused by changes in synaptogenesis mediated by activation of mTOR pathways. Our data suggest that YL-0919 may be a powerful/effective antidepressant with fast-onset

    Blockade of IL-33 signalling attenuates osteoarthritis.

    Get PDF
    Objectives:Osteoarthritis (OA) is the most common form of arthritis characterised by cartilage degradation, synovitis and pain. Disease modifying treatments for OA are not available. The critical unmet need is to find therapeutic targets to reduce both disease progression and pain. The cytokine IL-33 and its receptor ST2 have been shown to play a role in immune and inflammatory diseases, but their role in osteoarthritis is unknown. Methods:Non-OA and OA human chondrocytes samples were examined for IL-33 and ST2 expression. Novel inducible cartilage specific knockout mice (IL-33Acan CreERT2) and inducible fibroblast-like synoviocyte knockout mice (IL-33Col1a2 CreERT2) were generated and subjected to an experimental OA model. In addition, wild-type mice were intra-articularly administered with either IL-33- or ST2-neutralising antibodies during experimental OA studies. Results:IL-33 and its receptor ST2 have increased expression in OA patients and a murine disease model. Administering recombinant IL-33 increased OA and pain in vivo. Synovial fibroblast-specific deletion of IL-33 decreased synovitis but did not impact disease outcomes, whilst cartilage-specific deletion of IL-33 improved disease outcomes in vivo. Blocking IL-33 signalling also reduced the release of cartilage-degrading enzymes in human and mouse chondrocytes. Most importantly, we show the use of monoclonal antibodies against IL-33 and ST2 attenuates both OA and pain in vivo. Conclusion:Overall, our data reveal blockade of IL-33 signalling as a viable therapeutic target for OA

    Sub-Acute Oral Toxicity of a Novel Derivative of Agomelatine in Rats in a Sex-Dependent Manner

    Get PDF
    Agomelatine (AGO) is a new type of antidepressant with demonstrated antidepressant effects and a unique modulating circadian rhythm action. However, AGO has hepatotoxicity, which limits its clinical application. In order to develop new drugs that cause less liver injury than AGO, a series of derivatives were synthesized; compound GW117 was screened from derivatives due to its high receptor affinity. This study will investigate its sub-acute oral toxicity profile in rats in a sex-dependent manner. GW117 and AGO was administrated by gavage (200, 400, or 800 mg/kg/day) for 28 days. Hematological, biochemical tests, organ weights, histopathological examinations were carried out, the results showed that AGO and GW117 had adverse effects on platelet, liver and kidney, and had sex-differences in some indicators. Hematological tests showed that AGO and GW117 reduced the platelet count in male animals but had no effect in females. AGO increased plasma alanine aminotransferase (ALT) and total bilirubin in male animals, and GW117 had no effect on these two indicators. For females, AGO moderately elevated ALT, alkaline phosphatase (ALP), and total bilirubin, while GW117 only elevated ALP slightly. Two drugs could increase liver weight and coefficient, and cause liver pathological injury, including hepatic sinusoidal dilatation, hepatocyte fatty deposition and dotted cell necrosis in two genders. AGO caused mild to moderate hepatocyte and hepatobiliary injury in both genders, while only a mild hepatobiliary injury was caused by GW117 in females. Renal function tests showed that both drugs can increase blood urea nitrogen levels in males, while AGO, but not GW117, can slightly increase blood creatinine and urea nitrogen in females. The kidney weight and coefficient could be significantly increased by two drugs in males, and by AGO medium and GW117 high and low doses in females. The kidney pathological damage was mainly characterized by tubule dilatation, a thinning of the renal cortex. Kidney damage caused by GW117 was less than that of AGO, and there was no sex-difference. In summary, GW117 can cause mild liver and kidney damage in both genders, as well as mild platelets reduction in males, while degree of damage is less severe than AGO. Therefore, as an excellent derivative, GW117 deserves further development as an antidepressant

    Probiotics fortify intestinal barrier function: a systematic review and meta-analysis of randomized trials

    Get PDF
    BackgroundProbiotics play a vital role in treating immune and inflammatory diseases by improving intestinal barrier function; however, a comprehensive evaluation is missing. The present study aimed to explore the impact of probiotics on the intestinal barrier and related immune function, inflammation, and microbiota composition. A systematic review and meta-analyses were conducted.MethodsFour major databases (PubMed, Science Citation Index Expanded, CENTRAL, and Embase) were thoroughly searched. Weighted mean differences were calculated for continuous outcomes with corresponding 95% confidence intervals (CIs), heterogeneity among studies was evaluated utilizing I2 statistic (Chi-Square test), and data were pooled using random effects meta-analyses.ResultsMeta-analysis of data from a total of 26 RCTs (n = 1891) indicated that probiotics significantly improved gut barrier function measured by levels of TER (MD, 5.27, 95% CI, 3.82 to 6.72, P < 0.00001), serum zonulin (SMD, -1.58, 95% CI, -2.49 to -0.66, P = 0.0007), endotoxin (SMD, -3.20, 95% CI, -5.41 to -0.98, P = 0.005), and LPS (SMD, -0.47, 95% CI, -0.85 to -0.09, P = 0.02). Furthermore, probiotic groups demonstrated better efficacy over control groups in reducing inflammatory factors, including CRP, TNF-α, and IL-6. Probiotics can also modulate the gut microbiota structure by boosting the enrichment of Bifidobacterium and Lactobacillus.ConclusionThe present work revealed that probiotics could improve intestinal barrier function, and alleviate inflammation and microbial dysbiosis. Further high-quality RCTs are warranted to achieve a more definitive conclusion.Clinical trial registrationhttps://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=281822, identifier CRD42021281822

    Seizing the window of opportunity to mitigate the impact of climate change on the health of Chinese residents

    Get PDF
    The health threats posed by climate change in China are increasing rapidly. Each province faces different health risks. Without a timely and adequate response, climate change will impact lives and livelihoods at an accelerated rate and even prevent the achievement of the Healthy and Beautiful China initiatives. The 2021 China Report of the Lancet Countdown on Health and Climate Change is the first annual update of China’s Report of the Lancet Countdown. It comprehensively assesses the impact of climate change on the health of Chinese households and the measures China has taken. Invited by the Lancet committee, Tsinghua University led the writing of the report and cooperated with 25 relevant institutions in and outside of China. The report includes 25 indicators within five major areas (climate change impacts, exposures, and vulnerability; adaptation, planning, and resilience for health; mitigation actions and health co-benefits; economics and finance; and public and political engagement) and a policy brief. This 2021 China policy brief contains the most urgent and relevant indicators focusing on provincial data: The increasing health risks of climate change in China; mixed progress in responding to climate change. In 2020, the heatwave exposures per person in China increased by 4.51 d compared with the 1986–2005 average, resulting in an estimated 92% increase in heatwave-related deaths. The resulting economic cost of the estimated 14500 heatwave-related deaths in 2020 is US$176 million. Increased temperatures also caused a potential 31.5 billion h in lost work time in 2020, which is equivalent to 1.3% of the work hours of the total national workforce, with resulting economic losses estimated at 1.4% of China’s annual gross domestic product. For adaptation efforts, there has been steady progress in local adaptation planning and assessment in 2020, urban green space growth in 2020, and health emergency management in 2019. 12 of 30 provinces reported that they have completed, or were developing, provincial health adaptation plans. Urban green space, which is an important heat adaptation measure, has increased in 18 of 31 provinces in the past decade, and the capacity of China’s health emergency management increased in almost all provinces from 2018 to 2019. As a result of China’s persistent efforts to clean its energy structure and control air pollution, the premature deaths due to exposure to ambient particulate matter of 2.5 μm or less (PM2.5) and the resulting costs continue to decline. However, 98% of China’s cities still have annual average PM2.5 concentrations that are more than the WHO guideline standard of 10 μg/m3. It provides policymakers and the public with up-to-date information on China’s response to climate change and improvements in health outcomes and makes the following policy recommendations. (1) Promote systematic thinking in the related departments and strengthen multi-departmental cooperation. Sectors related to climate and development in China should incorporate health perspectives into their policymaking and actions, demonstrating WHO’s and President Xi Jinping’s so-called health-in-all-policies principle. (2) Include clear goals and timelines for climate-related health impact assessments and health adaptation plans at both the national and the regional levels in the National Climate Change Adaptation Strategy for 2035. (3) Strengthen China’s climate mitigation actions and ensure that health is included in China’s pathway to carbon neutrality. By promoting investments in zero-carbon technologies and reducing fossil fuel subsidies, the current rebounding trend in carbon emissions will be reversed and lead to a healthy, low-carbon future. (4) Increase awareness of the linkages between climate change and health at all levels. Health professionals, the academic community, and traditional and new media should raise the awareness of the public and policymakers on the important linkages between climate change and health.</p

    Experimental study of a piezoelectric cantilever beam under droplet impact

    No full text
    The dynamic response of a piezoelectric cantilever beam under droplet impact is investigated by conducting impact tests. Both droplet dynamic behaviours and voltage output can be acquired simultaneously by means of high-speed camera capturing technique. The surface wettability and the macrotextures affect the voltage generation in different ways. For all droplet sizes, both the super-hydrophobic-treated and untreated surfaces of the cantilever beam can generate the same magnitude of peak voltage. However, at lower impact velocity, the voltage generated from the untreated surface is slightly higher than the treated surface due to different impact mechanisms upon droplet-substrate interactions. For higher impact velocity, large-scaled droplets can experience splash and water spilling phenomena on the treated and untreated surface respectively, leading to mechanical energy loss of the system. But the treated surface shows a better performance. With the presence of a single macrotexture on the treated surface, there is a critical impact velocity which determines the transition of voltage output. For small-scaled droplets, the surface with the presence of a single macrotexture outperforms only with velocities over the critical value. For larger droplet size, the same trend can be obtained but the effect of the macrotexture is less significant. These outcomes from impact experiments may lay a foundation for future study of exploring new surfaces for piezoelectric energy harvesting devices in the aim of improving the raindrop energy recovery efficiency

    The effect of slenderness ratio on water entry

    No full text
    In the paper, the air cavity created by vertical water entry of cylinders with different slenderness ratio (defined as “s=L/D”) is investigated experimentally, theoretically, and computationally. The study is focused on the range of Froude numbers, Fr = V/(gr) 0.5, (12< Fr< 30). Particular attention is given to the effect of slenderness ratios on the surface seal time, the evolution process of the cavities. To understand the water entry physical processes, we conduct several experiments of water entry of different length cylinders. A theory model considering the added mass (induced by the water motion), buoyancy force, gravity, and water-resisting force is developed to predict the relationship between the falling distance and evolution time. Studies show that for the same size bullet the surface seal time of the cavity decreases with the increase of impact speed. Under the identical impact speed, the cavity seal time decreases with the increase of the slenderness ratio. For the consistent impact speed, with the value of “s” increase, the falling distance increase (the same moment). The falling distance captured by the developed theoretical model match with the experimental and numerical data
    • …
    corecore