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Abstract
Background/Aims: Metabolic diseases are leading health concerns in today’s global society. 
In traditional Chinese medicine (TCM), one body type studied is the phlegm-dampness 
constitution (PC), which predisposes individuals to complex metabolic disorders. Genomic 
studies have revealed the potential metabolic disorders and the molecular features of 
PC. The role of epigenetics in the regulation of PC, however, is unknown. Methods: We 
analyzed a genome-wide DNA methylation in 12 volunteers using Illumina Infinium Human 
Methylation450 BeadChip on peripheral blood mononuclear cells (PBMCs). Eight volunteers 
had PC and 4 had balanced constitutions. Results: Methylation data indicated a genome-scale 
hyper-methylation pattern in PC. We located 288 differentially methylated probes (DMPs). 
A total of 256 genes were mapped, and some of these were metabolic-related. SQSTM1, 
DLGAP2 and DAB1 indicated diabetes mellitus; HOXC4 and SMPD3, obesity; and GRWD1 
and ATP10A, insulin resistance. According to Ingenuity Pathway Analysis (IPA), differentially 
methylated genes were abundant in multiple metabolic pathways. Conclusion: Our results 
suggest the potential risk for metabolic disorders in individuals with PC. We also explain the 
clinical characteristics of PC with DNA methylation features.

Introduction

Due to widespread over-nutrition and sedentary lifestyles, metabolic diseases and 
the subsequent morbidity and mortality are major public health issues in our current 
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society [1]. The steadily increasing prevalence of metabolic disease may be associated with 
cardiovascular disease and diabetes [2]. It has been estimated that 25% of the world’s adult 
population is suffering from these diseases, and these have notoriously emerged as being the 
world’s major medical and financial burdens [3]. In addition to conventional therapy, early 
prevention and prediction are beneficial in the promotion of health optimization according 
to “P4 medicine” [4].

Increasing evidence has revealed that genetic, environmental and dietary factors 
contribute to the development of metabolic diseases. Epigenetics is thought to be a potential 
link between postnatal environmental factors and diseases, which refers to a reversible and 
heritable change that regulates gene expression without a change in the DNA sequence. DNA 
methylation, as a major epigenetic mechanism that typically occurs at CpG sites in adult cells, 
is frequently studied [5-9]. Due to its stability in blood samples and transmissibility during 
cell division, DNA methylation can be used to characterize early disease progression, and it 
provides an efficient way to prevent and predict diseases in clinical practice. To date, changes 
in DNA methylation have been widely reported to be involved in the onset of a variety of 
metabolic diseases, including diabetes mellitus, fatty liver, and metabolic syndrome [10-15].

Phlegm-dampness constitution (PC), one of the nine different body constitution types 
in Traditional Chinese medicine (TCM), is thought to be the preclinical stage of multiple 
metabolic disorders [16, 17]. Our previous studies have mainly focused on genomics and 
single nucleotide polymorphisms (SNPs) of PC, and we discovered correlations between the 
PC and multiple metabolic disorders [16, 18]. However, there have been no epigenetic studies 
on PC formation, particularly the effects of DNA methylation. As an ongoing study, we aim 
to investigate the DNA methylation profile of PC on a genome-wide level using the balanced 
constitution (BC) as a control group. We also hope to evaluate the difference between the 
two constitution types (BC and PC) to discover the potential molecular biomarkers of PC. 
This study could reveal the molecular mechanism behind the preclinical stage of metabolic 
diseases and shed new light on early prevention and prediction.

Materials and Methods

Study subjects
Eight PC volunteers and four BC volunteers were included according to the standard of Classification 

and diagnosis of TCM Constitution [19]. The participants ranged in age from 30 to 60 years old. They had 
no diagnosed diseases, and all of them provided written informed consent. This study was approved by the 
Beijing University of Chinese Medicine ethics committee and performed in accordance with the Declaration 
of Helsinki.

PBMC isolation
Venous blood samples were extracted with an EDTA anticoagulant tube. Peripheral blood mononuclear 

cells (PBMCs) were isolated using Ficoll-Hypaque (Histopaque-1077, Sigma-Aldrich, St. Louis, USA) density 
gradient centrifugation.

DNA extraction
Genomic DNA was extracted from the isolated cell pellets using DNeasy Blood and Tissue Kit (Qiagen, 

Hilden, Germany) according to the manufacturer’s instructions. DNA purity and quantity was assessed using 
a NanoDrop Spectrophotometer (Thermo Scientific, DE, USA), and the samples were diluted to standard 
concentrations of 50 ng/μL.

Infinium 450K BeadChip analysis
Bisulfite conversion was conducted on 1μg of DNA sample from each participant using the EZ DNA 

Methylation kit (Zymo Research Corp, Orange, CA, USA). A genome-wide DNA methylation examination 
was performed using the Infinium Human Methylation450 BeadChip (Illumina, San Diego, CA, USA), which 
interrogates 485, 512 CpG sites [20, 21]. BeadChips were scanned with an Illumina iScan; the scanned data 
and image output files were managed with Genomestudio software (version 1.9.0; Illumina).

http://dx.doi.org/10.1159%2F000487976


Cell Physiol Biochem 2018;45:1999-2008
DOI: 10.1159/000487976
Published online: March 08, 2018 2001

Cellular Physiology 
and Biochemistry

Cellular Physiology 
and Biochemistry

© 2018 The Author(s). Published by S. Karger AG, Basel
www.karger.com/cpb

Yao et al.: DNA Methylation Profiles of PC

Bioinformatics and Statistical Analysis
Illumina 450K probe preprocessing. No outlier samples were identified after comparing the methylation 

beta value box plot and density plot of 12 subjects. All samples were included in the subsequent analysis. 
At first, we excluded 144, 854 CpG probes that ambiguously mapped to the human genome (hg19), and a 
total of 340, 658 probes passed the analysis using Bowtie [22]. We also filtered 12, 871 CpG probes that 
contained common single-nucleotide polymorphisms (SNPs) so that the relative methylation level in each 
sample was not affected by potential genetic bias. Next, we removed 3965 probes that had a bead count <3 
in 5% of samples or >1% of samples with a detection p-value of >0.01. The residual signal intensity values 
were normalized using the subset-quantile within an arrays normalization (SWAN) method for reducing 
technical variation, as implemented in the minfi R-package [23]. Although one chip is not irrespective of the 
batch effect in our data, we excluded 7466 CpG sites on the X- and Y-chromosomes to reduce the effects of 
differential methylation between males and females on the sex chromosomes. WBC proportion estimation 
for each sample was necessary for controlling for the effects of the relative proportions of different WBC 
types on methylation level. In the end, a total of 316, 356 autosomal CpG sites were tested in all samples 
(Fig. 1A).

To identify differentially methylated CpG sites. The beta value indicated the DNA methylation level of 
each CpG probes, and beta was defined as: Beta=Meth/ (Meth+Unmeth+100). However, since the beta value 
was in a proportion range from 0 to 1, we transformed it to M value, which was defined as: M=log (beta/ 
(1-beta)) [24]. Differentially methylated probes (DMPs) were detected by comparing the M values between 
the two groups. Statistical significance was tested with an unpaired Student’s t-test and Wilcoxon signed 
rank test. Due to the small sample size of this study, we analyzed the data using the two statistical methods 
separately and identified the probes that overlapped as the DMPs. Finally, the analytic approach we adopted 
to rank DMPs was to take both statistical significance (p-value) and the magnitude of absolute mean beta 
value difference (i.e., absolute Δβ).

IPA analysis. The Ingenuity Pathway Analysis (IPA) system was used to analyze potentially altered 
network relationships, candidate biomarkers, and associated diseases from the list of differentially 
methylated genes between PC and BC individuals. Using a nonparametric test, IPA measured the likelihood 
due to chance that genes from the list participated in each network and category of Molecular Function and 
diseases and calculated the corresponding p-value.

Results

Subjects’ characteristics
The characteristics of the study subjects in the PC and BC group are shown in Table 

1. No significant differences were noted between these two groups in sex, age, body mass 
index (BMI), waist circumference, fasting blood glucose, fasting insulin, blood pressure, total 
cholesterol, triglyceride, low-density lipoprotein, or high-density lipoprotein. All subjects 
from both groups were healthy individuals with no diagnosable diseases.

Identification of global methylation patterns in PC and BC subjects
A total of 316, 356 sites on the beadchip were included after probe filtering and normal-

ization (Fig. 1A). A genome-wide DNA methylation analysis was performed to explore the 
global methyla-
tion pattern of PC 
and BC subjects. 
Methylation levels 
of CpG sites in the 
two groups were 
strongly corre-
lated as shown in 
Fig. 1B (Pearson’s 
R 2= 0 . 9 9 7 8 7 1 5 , 
p-value < 2.2e-

Table 1. Characteristics of the study subjects. * P-values were calculated respec-
tively using Student’s t-test and Fisher’s exact test for continuous and categorical 
variables

 

 

 

 

Variables Phlegm-dampness Constitution 
(N=8) 

Balanced Constitution 
(N=4) P-Value* 

Male, n (%) 2(25) 1(25) 1 
Age (years),Mean (SD) 44.63 ± 3.640 35.25 ± 2.658 0.1231 
Body mass index (kg/m2),mean(SD) 23.44 ± 0.6068 23.55 ± 0.5008 0.9072 
Waist circumference (cm),mean(SD) 80.50 ± 2.928 79.50 ± 3.304 0.8387 
Fasting blood glucose (mmol/L), mean (SD) 5.249 ± 0.1281 5.310 ± 0.1240 0.7694 
Fasting insulin (pmol/ml),mean(SD) 9.664 ± 1.731 6.883 ± 1.176 0.3151 
Systolic blood pressure (mmHg),mean(SD) 122.8 ± 10.18 107.5 ± 3.227 0.3304 
Diastolic blood pressure (mmHg),mean(SD) 73.75 ± 3.063 66.75 ± 3.119 0.1842 
Total cholesterol (mmol/L),mean(SD) 4.983 ± 0.3528 4.820 ± 0.5057 0.7965 
Triglyceride (mmol/L),mean(SD) 1.281 ± 0.09644 0.9400 ± 0.1802 0.0945 
Low density lipoprotein (mmol/L),mean(SD) 2.414 ± 0.1042 2.425 ± 0.2925 0.9646 
High density lipoprotein (mmol/L),mean(SD) 1.449 ± 0.09990 1.593 ± 0.1441 0.4282 
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16). The fractions of low methylated CpG 
sites (<25%) in the PC and BC groups were 
30.27% and 30.32%, respectively. The PC 
group showed 49.16% highly methylated CpG 
sites fraction (>75%) compared with 47.89% 
in BC group. As shown in Fig. 2A, the average 
global levels of DNA methylation were similar 
between PC and BC subjects.

Using Student’s t-test to compare 
each of the CpG sites individually, 2252 
differentially methylated probes were 
detected in the 316, 356 included probes, 
while 1658 differential probes were located 
by the Wilcoxon signed rank test. The 
overlapping 1011 probes were identified 
to be significantly (p < 0.01) differentially 
methylated between PC and BC individuals 
(Fig. 1C, Fig. 2B). The Δβ was also considered 
as a criterion of DMP identification, 288 of 
these 1011 probes met the threshold of |Δβ| 
≥ 0.05, including 187 hypermethylated and 
101 hypomethylated ones (Fig. 2B), and the 
top 25 DMPs, sorted by the Δβ, were listed 
in Table 2.

According to the analysis of these 288 
DMPs, the subjects in the PC group exhibited 
higher methylation levels than those in 
the BC group (Fig. 2C). The proportions of 
288 DMPs measured by location relative 
to CpG island regions and gene regions are 
presented in Fig. 3A and 3B, respectively. 
Most of the hypermethylated DMPs are located in the Open Sea, followed by the North Shore 
and the South Shore. For the hypomethylated DMPs, CpG islands were ranked first and were 
followed by the North Shore and the Open Sea. In terms of gene regions, both hyper and 
hypomethylated DMPs were predominantly located at the promoters, included TSS1500, 
TSS200, UTR5 and 1stExon. Supervised hierarchical clustering based on the data of 288 
DMPs demonstrated that there were distinctly different DNA methylation patterns between 
subjects in the PC and BC groups, which are displayed as a heatmap in Fig. 3C.

Fig. 1. Comparison of Global DNA methylation in 
phlegm-dampness constitution (PC) with balanced 
constitution (BC) groups. (A) Filter workflow of Il-
lumina 450k Infinium Methylation BeadChip. (B) 
The overall correlation plot between the beta values 
of all CpG sites in PC and BC. DNA methylation was 
measured as the beta value ranging from 0 (unmeth-
ylated) to 1 (completely methylated). All available 
probes (316356 CpG sites) are shown. (C) Volcano 
plot of all CpG methylation β-values. The data for all 
available probes (316356 CpG sites) are plotted as 
β-values versus the −log10 of the P-values. Thresh-
olds are shown as dashed lines. Genes selected as sig-
nificantly different are highlighted as red dots.

	

Figure	1.	
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Fig. 2. Whole methylome analysis of peripheral 
blood mononuclear cells (PBMCs) from PC and BC 
subjects. (A) Differences in the global methylation 
levels of the overall available CpGs between PC and 
BC groups. (B) Venn diagram showing the meth-
ods for identifying differentially methylated probes 
(DMPs) based on two statistic methods and Δβ 
threshold. A total of 2252 and 1658 DMPs are detect-
ed by Student’s t-test and Wilcoxon signed rank test 
respectively (P<0.01). Among the overlapped probes 
of the two sets, 288 DMPs met the criterion of |Δβ| 
≥ 0.05. (C) Global differences in methylation levels 
of the 288 DMPs identified by 450K array analysis 
between PC and BC groups (P<0.001).
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DMPs between PC and BC groups significantly associated with metabolic diseases
A global view of all included CpG sites is presented in a Manhattan plot (Fig. 4A), indicat-

ing that the significant DMPs were mainly located on chromosomes 5, 6, and 19. A list of 256 
genes, including 169 hypermethylated and 87 hypomethylated genes, were mapped based 
on the 288 DMPs. IPA analysis was used to investigate the associated top diseases and bio-

Fig. 3. Analysis of 288 DMPs between PC and 
BC groups. (A) Proportions of 288 DMPs mea-
sured by location relative to CpG isle regions. 
The six categories of CpG island, North Shelf, 
North Shore, Open Sea, South Shelf and South 
Shore are identified according to Illumina 450K 
annotation. (B) Proportions of 288 DMPs mea-
sured by functional location relative to gene re-
gions. The regions of 200 bp and 200 to 1500 bp 
upstream of transcription starting site are cat-
egorized as TSS 200 and TSS 1500, respectively. 
The other five groups are 5’ UTR, first exon, 
gene body, 3’ UTR, and intergenic regions. (C) 
Heatmap of the 288 DMPs between PC and BC groups. Columns represent the samples (8 PC subjects and 
4 BC subjects) and each row represents a CpG site. Higher methylation levels are shaded in red and lower 
levels are in green. The dendrogram shows the results of unsupervised hierarchical clustering of the 288 
CpG sites, which separates PC subjects from BC subjects distinctly.

Table 2. Top 25 differently methylated CpG sites based on the Δβ (P < 0.01)

 

 

 

 
IllumID  Gene symbol  Gene feature  Δβ Associated diseases  
cg21498547  DLGAP2  3'UTR  0.495 epithelial cancer, adenocarcinoma, Alzheimer's disease, carcinoma, endometrioid cancer, non-insulin-dependent diabetes mellitus 
cg13925773  DUSP19  TSS200  -0.179 adenocarcinoma, epithelial cancer 
cg26542412  TGFBR3  5'UTR  0.166 acute myeloid leukemia, ovarian neoplasia, Duchenne muscular dystrophy,etc. 
cg26029734  PAX6  Body  -0.161 aniridia, congenital aniridia, irido-corneo-trabecular dysgenesis, aniridia, etc. 
cg16155081  TAF1B  TSS1500  -0.149  epithelial cancer, adenocarcinoma, carcinoma 
cg04066190  TFAP2A  Body  -0.149 branchiooculofacial syndrome, epithelial cancer, etc. 
cg00818680  TMCO7  Body  0.148  melanoma, melanoma cancer,non-insulin-dependent diabetes mellitus 
cg15082992  —— —— -0.142 —— 
cg08627825  —— —— -0.141 —— 
cg12891252  HNRNPF  5'UTR  0.141 infection by HIV-1, endometrioid cancer, endometrioid carcinoma, epithelial cancer, melanoma, melanoma cancer 
cg17796323  N4BP3  Body  -0.134 epithelial cancer, adenocarcinoma, breast cancer, carcinoma 
cg04206742  TGDS  TSS1500  -0.132 Catel-Manzke syndrome, productive infection by HIV-1 
cg14553705  —— —— -0.13 —— 
cg15443732  GALR1  TSS1500  0.13 melanoma cancer, melanoma, neoplasia, pheochromocytoma, tumor 
cg24768902  PLXDC1  TSS1500  0.129 cancer, osteosarcoma, melanoma cancer, angiomatosis, hemangioma, squamous cell carcinoma 
cg23936410  —— —— -0.129 —— 
cg12486814  C1orf192  TSS200  0.126 melanoma cancer 
cg21571166  ZIC1  3'UTR  -0.126 —— 
cg10547050  PHF12  Body  -0.125 endometrioid cancer, endometrioid carcinoma, epithelial cancer, infection by HIV-1 
cg05033239  GPR98  Body  0.125 type IIC Usher syndrome, melanoma cancer, melanoma, epithelial cancer,etc. 
cg07310406  MLC1  TSS1500;TSS200  -0.124 megalencephalic leukoencephalopathy with subcortical cysts 1, adenocarcinoma, etc. 
cg22151644  HOXC4  5'UTR  0.123 adenocarcinoma, epithelial cancer, rheumatoid arthritis 
cg25373372  FAM46A   -0.123 adenocarcinoma, epithelial cancer, neoplasia, tumor 
cg26345888  DAB1  TSS200  -0.121 melanoma cancer, melanoma, adenocarcinoma, epithelial cancer, schizophrenia, amyotrophic lateral sclerosis, non-insulin-dependent diabetes mellitus 

 
	

	

Figure	3.	

	 	

A
Isle	Region

Gene	Region

C

B

Fig. 4. Manhattan plot and Quantile-
quantile (QQ) plot. (A) Manhattan 
plot showing global distribution of 
DMPs according to the chromosomes 
sequence. The x-axis represents 
chromosomes; the y-axis represents 
-log10 (p-values). DMPs above the 
blue line represent a genome-wide 
significance (p<1e-04). (B) QQ plot 
of p-values from all 316356 probes. 
The x-axis shows the expected −
log10(p-value). The y-axis displays 
the observed –log10(p-value). The red line indicates the expected distributions under the hypothesis. The 
gray shaded region represents the 95% confidence interval.
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logical functions of 
these differentially 
methylated genes. 
As shown in Table 
3, hypermethylated 
genes were mainly 
related to cancer, 
g a s t r o i n t e s t i n a l 
disease, cell mor-
phology and lipid 
metabolism. Hypo-
methylated genes 
were mainly related 
to dermatological 
diseases, immuno-
logical and inflam-
matory diseases (Ta-
ble 4). Further gene 
pathway analysis in-
dicated that the hy-
pomethylated genes 
were enriched in the 
pathways related to 
immune responses 
(Cytotoxic T lym-
phocyte-mediated 
apoptosis of target 
cells) and metabo-
lism (D-glucuronate 
degradationⅠ, Glutamate degradation III). The hypermethylated genes were enriched in 
pathways, including acyl carrier protein metabolism, super pathway of cholesterol biosyn-
thesisⅡ, tetrahydrobiopterin biosynthesis, VDR/RXR activation, and lysine degradation, 
that were all involved in various metabolic processes (Fig. 5A).

Some genes, which were mapped by top DMPs with the most distinct Δβ, were related 
to the metabolism according to the gene function annotation. In Table 5, we showed that DL-
GAP2 and DAB1 were involved with diabetes mellitus [25, 26]; HOXC4, HOXC5, and HOXC6 
were related to obesity and fat accumulation in differentiated brown adipocytes [27-30]; 
MECOM was associated with hypertension [31]. It is interesting to note that, of these 288 
DMPs, two probes (cg22151644 and cg18473521) were both annotated to gene HOXC4. This 
implied that this gene might be linked to PC identification.

By the analysis of Manhattan plot in Fig. 4, some specific sites (p<1e-04) were also 
screened out. The genes mapped by these sites were reported to be closely associated with 
multiple metabolic diseases (Table 5). For instance, SQSTM1 and FBXO9 were related with 
diabetes mellitus [32, 33]. GRWD1 and ATP10A were involved with insulin resistance [34-
36]. SMPD3, ATP10A and CTBP1 were associated with obesity [37-39]. MYO16 was involved 
with metabolic syndrome [40]. Network visualization and Gene Oncology (GO) analysis of 
these metabolic-related genes is displayed in Fig. 5B.

Discussion

This study is the first comprehensive analysis to explore the genome-wide DNA meth-
ylation profiles in human PBMCs of PC and BC subjects and to detect the differences be-
tween these two constitution types using an Infinium 450K BeadChip assay. The contrasting 

Table 4. IPA summary of 87 hypomethylated genes on top diseases and bio-
functions

Table 5. Metabolic-related genes mapped based on 288 DMPs

 

 

 

 

 Illumina ID Chromosome Gene symbol Gene features  Δβ p-value Associated disease Reference 

Sorted by |Δβ| 

cg21498547  chr8 DLGAP2 3'UTR  0.495 0.005014063 diabetes mellitus [24] 
cg26345888  chr1 DAB1  TSS200  -0.121 0.000985864 diabetes mellitus [25] 
cg18473521 chr12 HOXC4 Body -0.104801945 0.001258699 obesity [26] 
cg24458896 chr3 MECOM Body -0.103044391 0.004821182 hypertension [30] 
cg06714180 chr13 HOXC4; HOXC5; HOXC6 TSS1500 -0.075991233 0.005506578 obesity [26, 27, 28, 29] 

         

Sorted by p-value 

cg07291563 chr19 GRWD1 1stExon 0.056162301 2.66E-06 insulin resistance [33] 
cg01788205 chr15 ATP10A Body 0.013843073 5.01E-06 obesity, insulin resistance [34, 35, 38] 
cg22198907 chr5 SQSTM1 Body 0.011992258 1.85E-05 diabetes mellitus [31] 
cg04703197 chr16 SMPD3 5'UTR 0.00081136 5.92E-05 obesity [36] 
cg22664450 chr13 MYO16 TSS1500 -0.042456757 7.70E-05 metabolic syndrome [39] 
cg23982237 chr6 FBXO9 TSS1500 -0.069287866 9.09E-05 diabetes mellitus [32] 
cg03521085 chr4 CTBP1 Body 0.004355016 9.17E-05 obesity [37] 

 

 

 

 

 

 

 

Variables Phlegm-dampness Constitution 
(N=8) 

Balanced Constitution 
(N=4) P-Value* 

Male, n (%) 2(25) 1(25) 1 
Age (years),Mean (SD) 44.63 ± 3.640 35.25 ± 2.658 0.1231 
Body mass index (kg/m2),mean(SD) 23.44 ± 0.6068 23.55 ± 0.5008 0.9072 
Waist circumference (cm),mean(SD) 80.50 ± 2.928 79.50 ± 3.304 0.8387 
Fasting blood glucose (mmol/L), mean (SD) 5.249 ± 0.1281 5.310 ± 0.1240 0.7694 
Fasting insulin (pmol/ml),mean(SD) 9.664 ± 1.731 6.883 ± 1.176 0.3151 
Systolic blood pressure (mmHg),mean(SD) 122.8 ± 10.18 107.5 ± 3.227 0.3304 
Diastolic blood pressure (mmHg),mean(SD) 73.75 ± 3.063 66.75 ± 3.119 0.1842 
Total cholesterol (mmol/L),mean(SD) 4.983 ± 0.3528 4.820 ± 0.5057 0.7965 
Triglyceride (mmol/L),mean(SD) 1.281 ± 0.09644 0.9400 ± 0.1802 0.0945 
Low density lipoprotein (mmol/L),mean(SD) 2.414 ± 0.1042 2.425 ± 0.2925 0.9646 
High density lipoprotein (mmol/L),mean(SD) 1.449 ± 0.09990 1.593 ± 0.1441 0.4282 

 

Table 3. IPA summary of 169 hypermethylated genes on top diseases and bio-
functions

 

 

 

 

 Name  P-value #Molecules 

Diseases and Disorders 

Dermatological Diseases and Conditions 8.47E-03 - 9.55E-04 5 
Immunological Disease 1.27E-02 - 9.55E-04 9 
Inflammatory Disease 6.64E-03 - 9.55E-04 5 

Inflammatory Response 4.25E-03 - 9.55E-04 2 
Cancer 4.56E-02 - 4.25E-03 62 

Molecular and Cellular Functions 

Cell-To-Cell Signaling and Interaction 4.17E-02 - 4.25E-03 4 
Cellular Assembly and Organization 3.76E-02 - 4.25E-03 5 

Cellular Growth and Proliferation 3.76E-02 - 4.25E-03 7 
Cellular Movement 4.25E-03 - 4.25E-03 1 
Lipid Metabolism 3.76E-02 - 4.25E-03 3 
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DNA methylation profiles 
of PC and BC groups pro-
vided solid support for 
the constitution classi-
fication system in TCM. 
Furthermore, this study 
can verify the reliability 
of the TCM theory that 
the healthy individuals 
within an ethnic popula-
tion can be divided into 
distinct groups with cor-
responding disease risks. 
Our previous study exam-
ined the gene expression 
patterns of PBMCs iso-
lated from PC and BC vol-
unteers, and 355 differ-
entially expressed genes 
were identified between 
these two groups [18]. 
As an ongoing study, this 
work goes further based 
on previous studies and 
confirms the efficacy of 
TCM constitution classi-
fication at the epigenetic 
level for the first time.

A list of genes ob-
tained from the annota-
tion of 288 DMPs was 
screened out between 
PC and BC individuals. 
IPA results revealed that 
the molecular and cel-
lular functions of hyper-
methylated genes, such 
as B4GALNT1, ST6GAL-
NAC5, DHCR24, and 
PRKCZ, were significantly 
associated with lipid me-
tabolism as reported [41-
43]. The hypomethylated genes (BCL11B, HLA-C, FOXP1, FOXP1) were mainly involved with 
immunological and inflammatory diseases [44]. It was noteworthy that these molecular fea-
tures are consistent with previous publications and clinical observations in TCM [16, 44, 45]. 
In this experiment, the findings were limited by the relatively small numbers of samples. We 
will try to enlarge the sample scales of PC and BC individuals for further validation. More op-
timal tissues for obtaining DNA, not only from PBMCs of blood, will also be used for further 
investigation.

Conclusion

our present study explored the DNA methylation characteristics of PC for the first time. 
We identified the DMPs and the corresponding genes associated with obesity, diabetes 

Fig. 5. Pathway analysis and function annotation of genes mapped by 
DMPs. (A) summary of significant Canonical pathway analysis derived 
from ingenuity pathway analysis (IPA) for 288 DMPs. The upper gray part 
and the lower black part indicates the significant pathways for genes with 
hypomethylation and hypermethylation respectively. The y-axis displays 
the functional categories that are identified in the analyses. The x-axis 
demonstrates the significance which is the value of -log (P-value). (B) Net-
work visualization of metabolic related genes and Gene Ontology (GO) 
terms. The genes were mapped by the top DMPs that were selected by a 
Manhattan plot analysis.
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mellitus, and other metabolic diseases. These results further support the existing research 
on molecular biological characteristics of PC. We also provide a possible approach for 
identifying metabolic disease-susceptible individuals in a healthy population, indicating the 
objective existence of the subtypes of the healthy population defined by TCM constitution. 
Apart from the influence of epigenetic mechanisms in the pathogenesis of multiple metabolic 
disorders [46-49], data from this study suggested that DNA methylation might also play a 
potential role in the pathological mechanism of PC, which is the incubating stage of multiple 
metabolic diseases.
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