95 research outputs found

    Numerical calculations near spatial infinity

    Get PDF
    After describing in short some problems and methods regarding the smoothness of null infinity for isolated systems, I present numerical calculations in which both spatial and null infinity can be studied. The reduced conformal field equations based on the conformal Gauss gauge allow us in spherical symmetry to calculate numerically the entire Schwarzschild-Kruskal spacetime in a smooth way including spacelike, null and timelike infinity and the domain close to the singularity.Comment: 10 pages, 2 postscript figures, uses psfrag; to appear in the Proceedings of the Spanish Relativity Meeting (ERE 2006), Palma de Mallorca, Spain, 4-8 September 200

    Swarm-Based Optimization with Random Descent

    Full text link
    We extend our study of the swarm-based gradient descent method for non-convex optimization, [Lu, Tadmor & Zenginoglu, arXiv:2211.17157], to allow random descent directions. We recall that the swarm-based approach consists of a swarm of agents, each identified with a position, x{\mathbf x}, and mass, mm. The key is the transfer of mass from high ground to low(-est) ground. The mass of an agent dictates its step size: lighter agents take larger steps. In this paper, the essential new feature is the choice of direction: rather than restricting the swarm to march in the steepest gradient descent, we let agents proceed in randomly chosen directions centered around -- but otherwise different from -- the gradient direction. The random search secures the descent property while at the same time, enabling greater exploration of ambient space. Convergence analysis and benchmark optimizations demonstrate the effectiveness of the swarm-based random descent method as a multi-dimensional global optimizer

    A new gravitational wave generation algorithm for particle perturbations of the Kerr spacetime

    Get PDF
    We present a new approach to solve the 2+1 Teukolsky equation for gravitational perturbations of a Kerr black hole. Our approach relies on a new horizon penetrating, hyperboloidal foliation of Kerr spacetime and spatial compactification. In particular, we present a framework for waveform generation from point-particle perturbations. Extensive tests of a time domain implementation in the code {\it Teukode} are presented. The code can efficiently deliver waveforms at future null infinity. As a first application of the method, we compute the gravitational waveforms from inspiraling and coalescing black-hole binaries in the large-mass-ratio limit. The smaller mass black hole is modeled as a point particle whose dynamics is driven by an effective-one-body-resummed analytical radiation reaction force. We compare the analytical angular momentum loss to the gravitational wave angular momentum flux. We find that higher-order post-Newtonian corrections are needed to improve the consistency for rapidly spinning binaries. Close to merger, the subdominant multipolar amplitudes (notably the m=0m=0 ones) are enhanced for retrograde orbits with respect to prograde ones. We argue that this effect mirrors nonnegligible deviations from circularity of the dynamics during the late-plunge and merger phase. We compute the gravitational wave energy flux flowing into the black hole during the inspiral using a time-domain formalism proposed by Poisson. Finally, a self-consistent, iterative method to compute the gravitational wave fluxes at leading-order in the mass of the particle is presented. For a specific case study with a^\hat{a}=0.9, a simulation that uses the consistent flux differs from one that uses the analytical flux by ∌35\sim35 gravitational wave cycles over a total of about 250250 cycles. In this case the horizon absorption accounts for about +5+5 gravitational wave cycles

    Hyperboloidal data and evolution

    Get PDF
    We discuss the hyperboloidal evolution problem in general relativity from a numerical perspective, and present some new results. Families of initial data which are the hyperboloidal analogue of Brill waves are constructed numerically, and a systematic search for apparent horizons is performed. Schwarzschild-Kruskal spacetime is discussed as a first application of Friedrich's general conformal field equations in spherical symmetry, and the Maxwell equations are discussed on a nontrivial background as a toy model for continuum instabilities.Comment: 11 pages, 9 figures. To appear in the Proceedings of the Spanish Relativity Meeting (ERE 2005), Oviedo, Spain, 6-10 Sept 200

    Self-force via Green functions and worldline integration

    Get PDF
    A compact object moving in curved spacetime interacts with its own gravitational field. This leads to both dissipative and conservative corrections to the motion, which can be interpreted as a self-force acting on the object. The original formalism describing this self-force relied heavily on the Green function of the linear differential operator that governs gravitational perturbations. However, because the global calculation of Green functions in non-trivial black hole spacetimes has been an open problem until recently, alternative methods were established to calculate self-force effects using sophisticated regularization techniques that avoid the computation of the global Green function. We present a method for calculating the self-force that employs the global Green function and is therefore closely modeled after the original self-force expressions. Our quantitative method involves two stages: (i) numerical approximation of the retarded Green function in the background spacetime; (ii) evaluation of convolution integrals along the worldline of the object. This novel approach can be used along arbitrary worldlines, including those currently inaccessible to more established computational techniques. Furthermore, it yields geometrical insight into the contributions to self-interaction from curved geometry (back-scattering) and trapping of null geodesics. We demonstrate the method on the motion of a scalar charge in Schwarzschild spacetime. This toy model retains the physical history-dependence of the self-force but avoids gauge issues and allows us to focus on basic principles. We compute the self-field and self-force for many worldlines including accelerated circular orbits, eccentric orbits at the separatrix, and radial infall. This method, closely modeled after the original formalism, provides a promising complementary approach to the self-force problem.Comment: 18 pages, 9 figure

    Towards an organizational theory of hubris: symptoms, behaviours and social fields within finance and banking

    Get PDF
    Hubris has become a popular explanation for all kinds of business failure. It is often reduced to the one-dimensional notion of ‘over-confidence’, particularly on the part of CEOs. There is a need to clarify the extent to which other attitudes and behaviours constitute hubris, and how they are affected by such organisational dynamics as the struggle for power, status and material rewards between actors. This article explores these issues within the finance and banking sectors. It uses the Critical Incident Technique to identify behaviours associated with hubris and probes the interaction between them and the organisational contexts in which they occur. Five categories of behaviour based on an analysis of 101 incidents are described, as are a series of ‘inflection dynamics’ that reinforce the behaviours in question and constitute a social field conducive to hubris. I challenge the reductionist views that hubris is primarily a psychological state consisting mainly of ‘over-confidence’. This article seeks to complexify the term hubris and to develop an organisational rather than purely psychology theory of its emergence and institutionalisation within finance and banking

    A Random Forest Assisted Evolutionary Algorithm for Data-Driven Constrained Multi-Objective Combinatorial Optimization of Trauma Systems for publication

    Get PDF
    Many real-world optimization problems can be solved by using the data-driven approach only, simply because no analytic objective functions are available for evaluating candidate solutions. In this work, we address a class of expensive datadriven constrained multi-objective combinatorial optimization problems, where the objectives and constraints can be calculated only on the basis of large amount of data. To solve this class of problems, we propose to use random forests and radial basis function networks as surrogates to approximate both objective and constraint functions. In addition, logistic regression models are introduced to rectify the surrogate-assisted fitness evaluations and a stochastic ranking selection is adopted to further reduce the influences of the approximated constraint functions. Three variants of the proposed algorithm are empirically evaluated on multi-objective knapsack benchmark problems and two realworld trauma system design problems. Experimental results demonstrate that the variant using random forest models as the surrogates are effective and efficient in solving data-driven constrained multi-objective combinatorial optimization problems
    • 

    corecore