1,513 research outputs found

    A new Bloch period for interacting cold atoms in 1D optical lattices

    Full text link
    The paper studies Bloch oscillations of ultracold atoms in optical lattice in the presence of atom-atom interaction. A new, interaction-induced Bloch period is identified. The analytical results are corroborated by realistic numerical calculations.Comment: revtex4, 4 pages, 4 figures, gzipped tar fil

    Sensitive measurement of forces at micron scale using Bloch oscillations of ultracold atoms

    Full text link
    We show that Bloch oscillations of ultracold fermionic atoms in the periodic potential of an optical lattice can be used for a sensitive measurement of forces at the micrometer length scale, e.g. in the vicinity of dielectric surface. In particular, the proposed approach allows to perform a local and direct measurement of the Casimir-Polder force which is, for realistic experimental parameters, as large as 10^-4 gravity

    Probing neutrino mass hierarchies and ϕ13\phi_{13} with supernova neutrinos

    Get PDF
    We investigate the feasibility of probing the neutrino mass hierarchy and the mixing angle ϕ13\phi_{13} with the neutrino burst from a future supernova. An inverse power-law density ρrn\rho \sim r^{n} with varying nn is adopted in the analysis as the density profile of a typical core-collapse supernova. The survival probabilities of νe\nu_{e} and νˉe\bar{\nu}_{e} are shown to reduce to two-dimensional functions of nn and ϕ13\phi_{13}. It is found that in the nsin2ϕ13n-\sin^{2} \phi_{13} parameter space, the 3D plots of the probability functions exhibit highly non-trivial structures that are sensitive to the mass hierarchy, the mixing angle ϕ13\phi_{13}, and the value of nn. The conditions that lead to observable differences in the 3D plots are established. With the uncertainty of nn considered, a qualitative analysis of the Earth matter effect is also included.Comment: 16 pages, 3 figures. Ref [11] added, and some typos correcte

    Atom interferometry with trapped Fermi gases

    Full text link
    We realize an interferometer with an atomic Fermi gas trapped in an optical lattice under the influence of gravity. The single-particle interference between the eigenstates of the lattice results in macroscopic Bloch oscillations of the sample. The absence of interactions between fermions allows a time-resolved study of many periods of the oscillations, leading to a sensitive determination of the acceleration of gravity. The experiment proves the superiorness of non interacting fermions with respect to bosons for precision interferometry, and offers a way for the measurement of forces with microscopic spatial resolution.Comment: 4 pages, 4 figure

    Landau-Zener Tunnelling in Waveguide Arrays

    Full text link
    Landau-Zener tunnelling is discussed in connection with optical waveguide arrays. Light injected in a specific band of the Bloch spectrum in the propagation constant can be transmitted to another band, changing its physical properties. This is achieved using two waveguide arrays with different refractive indices, which amounts to consider a Schr\"odinger equation in a periodic potential with a step. The step causes wave "acceleration" and thus induces Landau-Zener tunnelling. The region of physical parameters where this phenomenon can occur is analytically determined and a realistic experimental setup is suggested. Its application could allow the realization of light filters.Comment: 4 pages, 6 figure

    Disorder-Induced First Order Transition and Curie Temperature Lowering in Ferromagnatic Manganites

    Full text link
    We study the effect that size disorder in the cations surrounding manganese ions has on the magnetic properties of manganites. This disorder is mimic with a proper distribution of spatially disordered Manganese energies. Both, the Curie temperature and the order of the transition are strongly affected by disorder. For moderate disorder the Curie temperature decreases linearly with the the variance of the distribution of the manganese site energies, and for a disorder comparable to that present in real materials the transition becomes first order. Our results provide a theoretical framework to understand disorder effects on the magnetic behavior of manganites.Comment: 4 pages, three figures include

    Nonlinear adiabatic passage from fermion atoms to boson molecules

    Full text link
    We study the dynamics of an adiabatic sweep through a Feshbach resonance in a quantum gas of fermionic atoms. Analysis of the dynamical equations, supported by mean-field and many-body numerical results, shows that the dependence of the remaining atomic fraction Γ\Gamma on the sweep rate α\alpha varies from exponential Landau-Zener behavior for a single pair of particles to a power-law dependence for large particle number NN. The power-law is linear, Γα\Gamma \propto \alpha, when the initial molecular fraction is smaller than the 1/N quantum fluctuations, and Γα1/3\Gamma \propto \alpha^{1/3} when it is larger. Experimental data agree better with a linear dependence than with an exponential Landau-Zener fit, indicating that many-body effects are significant in the atom-molecule conversion process.Comment: 5 pages, 4 figure

    Berry phase for ferromagnet with fractional spin

    Full text link
    We study the double exchange model on two lattice sites with one conduction electron in the limit of an infinite Hund's interaction. While this simple problem is exactly solvable, we present an approximate solution which is valid in the limit of large core spins. This solution is obtained by integrating out charge degrees of freedom. The effective action of two core spins obtained in the result of such an integration resembles the action of two fractional spins. We show that the action obtained via naive gradient expansion is inconsistent. However, a ``non-perturbative'' treatment leads to an extra term in the effective action which fixes this inconsistency. The obtained ``Berry phase term'' is geometric in nature. It arises from a geometric constraint on a target space imposed by an adiabatic approximation.Comment: 11 pages, 3 figures, revtex

    Resonant tunneling in a schematic model

    Full text link
    Tunneling of an harmonically bound two-body system through an external Gaussian barrier is studied in a schematic model which allows for a better understanding of intricate quantum phenomena. The role of finite size and internal structure is investigated in a consistent treatment. The excitation of internal degrees of freedom gives rise to a peaked structure in the penetration factor. The model results indicate that for soft systems the adiabatic limit is not necessarily reached although often assumed in fusion of nuclei and in electron screening effects at astrophysical energies.Comment: 7 pages, 7 figure

    Dynamic Fano Resonance of Quasienergy Excitons in Superlattices

    Full text link
    The dynamic Fano resonance (DFR) between discrete quasienergy excitons and sidebands of their ionization continua is predicted and investigated in dc- and ac-driven semiconductor superlattices. This DFR, well controlled by the ac field, delocalizes the excitons and opens an intrinsic decay channel in nonlinear four-wave mixing signals.Comment: 4pages, 4figure
    corecore