32 research outputs found

    BepiColombo Venus Flyby Science Operations Feasibility Analysis

    Get PDF
    BepiColombo is an interdisciplinary ESA mission to explore the planet Mercury in cooperation with the Japan Aerospace Exploration Agency (JAXA). The mission consists of 2 spacecraft, ESA’s Mercury Planetary Orbiter (MPO) and JAXA’s Mercury Magnetospheric Orbiter (MMO) that carry in total 17 science payloads for the investigation of Mercury’s structure, interior, composition, morphology, formation, evolution and environment. The Mercury Composite Spacecraft (MCS) made of MPO, MMO, a Mercury Transfer Module (MTM) and a sunshield (MOSIF) will be launched on an escape trajectory that will bring it into heliocentric orbit on its way to Mercury. During the cruise of 7.2 years toward the inner part of the Solar System, BepiColombo will make 1 flyby to the Earth, 2 to Venus, and 6 to Mercury. Only part of its payload will be obstructed by the sunshield and the cruise spacecraft configuration, so that the flybys will allow operations of many instruments, like: spectrometers at many wavelengths, accelerometer, radiometer, ion and electron detectors. A scientific working group (VFBWG, Venus Fly-by Working Group) has recently formed inside the BepiColombo community to identify potentially interesting scientific cases and to promote collaborations during the Venus flybys. At the same time, analyses of science operations requests has been carried out by the Science Ground Segment (SGS) at ESAC and the Operational Ground Segment (OGS) at ESOC to help scientists in the comprehension of feasibility of proposed investigations. The analysis of science observations includes special spacecraft pointing feasibility analysis taking into account the attitude constraints. During interplanetary cruise and outside electric propulsion, the default attitude of MCS is with +Y axis pointed to the Sun. The spacecraft attitude is then adjusted by ground around the sun line such that the angular momentum loading is minimized while ground contact is maximized during ground station passes. For the short duration of scientific interest around the Venus closest approaches, however, the need for angular momentum load minimization can be relaxed and it is possible to offset the Sun direction in the spacecraft composite +YZ plane. The SGS at ESAC developed a tool that allows to check the possibility of observing Venus in different spacecraft configurations for different instruments, for example finding out when Venus is inside a given instrument FoV. With that tool and based on the scientific instruments pointing requests, candidate pointing timelines were extracted, indicating that it is possible to find a suitable spacecraft composite attitude to provide observing opportunities to most instruments requiring specific spacecraft pointing. In addition, the OGS at ESOC analysed the impact of the received scientific requests on power balance, thermal balance and data return and found well within the as-designed capability of the spacecraft. This paper includes a summary of the scientific requests, the analysis carried out by both SGS and OGS and the results of the analysis

    Design status of ASPIICS, an externally occulted coronagraph for PROBA-3

    Get PDF
    The "sonic region" of the Sun corona remains extremely difficult to observe with spatial resolution and sensitivity sufficient to understand the fine scale phenomena that govern the quiescent solar corona, as well as phenomena that lead to coronal mass ejections (CMEs), which influence space weather. Improvement on this front requires eclipse-like conditions over long observation times. The space-borne coronagraphs flown so far provided a continuous coverage of the external parts of the corona but their over-occulting system did not permit to analyse the part of the white-light corona where the main coronal mass is concentrated. The proposed PROBA-3 Coronagraph System, also known as ASPIICS (Association of Spacecraft for Polarimetric and Imaging Investigation of the Corona of the Sun), with its novel design, will be the first space coronagraph to cover the range of radial distances between ~1.08 and 3 solar radii where the magnetic field plays a crucial role in the coronal dynamics, thus providing continuous observational conditions very close to those during a total solar eclipse. PROBA-3 is first a mission devoted to the in-orbit demonstration of precise formation flying techniques and technologies for future European missions, which will fly ASPIICS as primary payload. The instrument is distributed over two satellites flying in formation (approx. 150m apart) to form a giant coronagraph capable of producing a nearly perfect eclipse allowing observing the sun corona closer to the rim than ever before. The coronagraph instrument is developed by a large European consortium including about 20 partners from 7 countries under the auspices of the European Space Agency. This paper is reviewing the recent improvements and design updates of the ASPIICS instrument as it is stepping into the detailed design phase

    Spectroscopic observations of the 2011 Draconids meteor shower

    No full text
    International audienceSpectroscopic observations of meteors reveals the chemical composition of parent bodies and interplanetary dust. Draconids are an example of most fragile meteoroids, bringing us information about physical properties of the comet 21P/Giacobini-Zinner. During the 2011 Draconids meteor shower, airborne and ground-based meteor spectroscopic observations carried out. Here, we report on the results for spectra captured by cameras provided by the IMCCE, ESA, SETI Institute, and Ondrejov Observatory. Collected by us spectra show two dominant emissions of sodium line at 5890 Å and the magnesium line at 5180 Å. Moreover, other emision lines belong to iron and the N2 molecule.

    Spectroscopic observations of the 2011 Draconids meteor shower

    No full text
    International audienceSpectroscopic observations of meteors reveals the chemical composition of parent bodies and interplanetary dust. Draconids are an example of most fragile meteoroids, bringing us information about physical properties of the comet 21P/Giacobini-Zinner. During the 2011 Draconids meteor shower, airborne and ground-based meteor spectroscopic observations carried out. Here, we report on the results for spectra captured by cameras provided by the IMCCE, ESA, SETI Institute, and Ondrejov Observatory. Collected by us spectra show two dominant emissions of sodium line at 5890 Å and the magnesium line at 5180 Å. Moreover, other emision lines belong to iron and the N2 molecule.

    Radiants of the Leonids 1999 and 2001 Obtained by LLTV Systems Using Automatic Software Tools

    No full text
    International audienceBoth amateur and professional meteor groups are more frequently using Low-Light level TV (LLTV) systems to record meteors. Double-station observations can yield orbit data. However, data analysis normally is still done by hand and thus time consuming. This paper addresses the question of whether available automated tools can be used to determine reasonably accurate orbits with minimum human intervention. The European Space Agency performed several observing campaigns to observe the Leonid meteor stream. In November 1999, the ESA meteor group was stationed at two locations in Southern Spain, in November 2001 at two stations close to Broome in North-Western Australia. Double-station observations with LLTV systems were conducted. The data was recorded on S-VHS video tapes. The tapes were processed using automatic detection software from which meteor heights, velocities and radiants were computed. This paper shows the results for the two maximum nights. The radiants determined in 1999 show a very large scatter due to unfortunate observing geometry and inaccurate position determination since one of the cameras was moving because of the wind. The 2001 data is excellent and the radiant was determined to be at RA = 153.96°±0.3° and Dec = 21.09°±0.2°. The error bars for individual meteor radiants are about 0.2° to 0.4°. This demonstrates that is indeed possible to determine good radiant positions using totally automated tools. Orbits, on the other hand, are not well defined due to the fact that the velocity of individual meteors shows large errors. Reasons for this are described

    Defining the Core Archive Data Standards of the International Planetary Data Alliance (IPDA)

    No full text
    A goal of the International Planetary Data Alliance (lPDA) is to develop a set of archive data standards that enable the sharing of scientific data across international agencies and missions. To help achieve this goal, the IPDA steering committee initiated a six month proj ect to write requirements for and draft an information model based on the Planetary Data System (PDS) archive data standards. The project had a special emphasis on data formats. A set of use case scenarios were first developed from which a set of requirements were derived for the IPDA archive data standards. The special emphasis on data formats was addressed by identifying data formats that have been used by PDS nodes and other agencies in the creation of successful data sets for the Planetary Data System (PDS). The dependency of the IPDA information model on the PDS archive standards required the compilation of a formal specification of the archive standards currently in use by the PDS. An ontology modelling tool was chosen to capture the information model from various sources including the Planetary Science Data Dictionary [I] and the PDS Standards Reference [2]. Exports of the modelling information from the tool database were used to produce the information model document using an object-oriented notation for presenting the model. The tool exports can also be used for software development and are directly accessible by semantic web applications
    corecore