25 research outputs found
Bmi1 Is Down-Regulated in the Aging Brain and Displays Antioxidant and Protective Activities in Neurons
Aging increases the risk to develop several neurodegenerative diseases, although the underlying mechanisms are poorly understood. Inactivation of the Polycomb group gene Bmi1 in mice results in growth retardation, cerebellar degeneration, and development of a premature aging-like phenotype. This progeroid phenotype is characterized by formation of lens cataracts, apoptosis of cortical neurons, and increase of reactive oxygen species (ROS) concentrations, owing to p53-mediated repression of antioxidant response (AOR) genes. Herein we report that Bmi1 expression progressively declines in the neurons of aging mouse and human brains. In old brains, p53 accumulates at the promoter of AOR genes, correlating with a repressed chromatin state, down-regulation of AOR genes, and increased oxidative damages to lipids and DNA. Comparative gene expression analysis further revealed that aging brains display an up-regulation of the senescence-associated genes IL-6, p19Arf and p16Ink4a, along with the pro-apoptotic gene Noxa, as seen in Bmi1-null mice. Increasing Bmi1 expression in cortical neurons conferred robust protection against DNA damage-induced cell death or mitochondrial poisoning, and resulted in suppression of ROS through activation of AOR genes. These observations unveil that Bmi1 genetic deficiency recapitulates aspects of physiological brain aging and that Bmi1 over-expression is a potential therapeutic modality against neurodegeneration
GSK3β Regulates Differentiation and Growth Arrest in Glioblastoma
Cancers are driven by a population of cells with the stem cell properties of self-renewal and unlimited growth. As a subpopulation within the tumor mass, these cells are believed to constitute a tumor cell reservoir. Pathways controlling the renewal of normal stem cells are deregulated in cancer. The polycomb group gene Bmi1, which is required for neural stem cell self-renewal and also controls anti-oxidant defense in neurons, is upregulated in several cancers, including medulloblastoma. We have found that Bmi1 is consistently and highly expressed in GBM. Downregulation of Bmi1 by shRNAs induced a differentiation phenotype and reduced expression of the stem cell markers Sox2 and Nestin. Interestingly, expression of glycogen synthase kinase 3 beta (GSK3β), which was found to be consistently expressed in primary GBM, also declined. This suggests a functional link between Bmi1 and GSK3β. Interference with GSK3β activity by siRNA, the specific inhibitor SB216763, or lithium chloride (LiCl) induced tumor cell differentiation. In addition, tumor cell apoptosis was enhanced, the formation of neurospheres was impaired, and clonogenicity reduced in a dose-dependent manner. GBM cell lines consist mainly of CD133-negative (CD133-) cells. Interestingly, ex vivo cells from primary tumor biopsies allowed the identification of a CD133- subpopulation of cells that express stem cell markers and are depleted by inactivation of GSK3β. Drugs that inhibit GSK3, including the psychiatric drug LiCl, may deplete the GBM stem cell reservoir independently of CD133 status
Switches, Excitable Responses and Oscillations in the Ring1B/Bmi1 Ubiquitination System
In an active, self-ubiquitinated state, the Ring1B ligase monoubiquitinates histone H2A playing a critical role in Polycomb-mediated gene silencing. Following ubiquitination by external ligases, Ring1B is targeted for proteosomal degradation. Using biochemical data and computational modeling, we show that the Ring1B ligase can exhibit abrupt switches, overshoot transitions and self-perpetuating oscillations between its distinct ubiquitination and activity states. These different Ring1B states display canonical or multiply branched, atypical polyubiquitin chains and involve association with the Polycomb-group protein Bmi1. Bistable switches and oscillations may lead to all-or-none histone H2A monoubiquitination rates and result in discrete periods of gene (in)activity. Switches, overshoots and oscillations in Ring1B catalytic activity and proteosomal degradation are controlled by the abundances of Bmi1 and Ring1B, and the activities and abundances of external ligases and deubiquitinases, such as E6-AP and USP7
Brown clouds over South Asia: Biomass or fossil fuel combustion?
Carbonaceous aerosols cause strong atmospheric heating and large surface cooling that is as important to South Asian climate forcing as greenhouse gases, yet the aerosol sources are poorly understood. Emission inventory models suggest that biofuel burning accounts for 50 to 90 of emissions, whereas the elemental composition of ambient aerosols points to fossil fuel combustion. We used radiocarbon measurements of winter monsoon aerosols from western India and the Indian Ocean to determine that biomass combustion produced two-thirds of the bulk carbonaceous aerosols, as well as one-half and two-thirds of two black carbon subfractions, respectively. These constraints show that both biomass combustion (such as residential cooking and agricultural burning) and fossil fuel combustion should be targeted to mitigate climate effects and improve air quality