86 research outputs found
Improving Neural Vocoder Stability Using Artificial Training Data
A text-to-speech (TTS) converter typically comprises a prosodic model that generates acoustic parameters from linguistic features paired with a neural vocoder. With such a configuration, some feature values can be difficult for the neural vocoder to process, resulting in audio artifacts. This disclosure describes techniques to improve neural vocoder performance, e.g., reduce audio artifacts, make the vocoder more robust to unusual acoustic feature variations, generally be more forgiving of errors made by the feature generator, etc. The techniques entail the use of an auxiliary training path that is driven by synthetic training examples generated by CHiVE inference with some random sampling far enough from the mean (zero)
Recommended from our members
The effect of using normalized models in statistical speech synthesis
The standard approach to HMM-based speech synthesis is inconsistent in the enforcement of the deterministic constraints between static and dynamic features. The trajectory HMM and autoregressive HMM have been proposed as normalized models which rectify this inconsistency. This paper investigates the practical effects of using these normalized models, and examines the strengths and weaknesses of the different models as probabilistic models of speech. The most striking difference observed is that the standard approach greatly underestimates predictive variance. We argue that the normalized models have better predictive distributions than the standard approach, but that all the models we consider are still far from satisfactory probabilistic models of speech. We also present evidence that better intra-frame correlation modelling goes some way towards improving existing normalized models.This work was partly supported by the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement 213845 (EMIME)
The HTS-2008 System: Yet Another Evaluation of the Speaker-Adaptive HMM-based Speech Synthesis System in The 2008 Blizzard Challenge
For the 2008 Blizzard Challenge, we used the same speaker-adaptive approach to HMM-based speech synthesis that was used in the HTS entry to the 2007 challenge, but an improved system was built in which the multi-accented English average voice model was trained on 41 hours of speech data with high-order mel-cepstral analysis using an efficient forward-backward algorithm for the HSMM. The listener evaluation scores for the synthetic speech generated from this system was much better than in 2007: the system had the equal best naturalness on the small English data set and the equal best intelligibility on both small and large data sets for English, and had the equal best naturalness on the Mandarin data. In fact, the English system was found to be as intelligible as human speech
Performance Evaluation of The Speaker-Independent HMM-based Speech Synthesis System "HTS-2007" for the Blizzard Challenge 2007
This paper describes a speaker-independent/adaptive HMM-based speech synthesis system developed for the Blizzard Challenge 2007. The new system, named HTS-2007, employs speaker adaptation (CSMAPLR+MAP), feature-space adaptive training, mixed-gender modeling, and full-covariance modeling using CSMAPLR transforms, in addition to several other techniques that have proved effective in our previous systems. Subjective evaluation results show that the new system generates significantly better quality synthetic speech than that of speaker-dependent approaches with realistic amounts of speech data, and that it bears comparison with speaker-dependent approaches even when large amounts of speech data are available
Recommended from our members
Autoregressive Models for Statistical Parametric Speech Synthesis
We propose using the autoregressive hidden Markov model (HMM) for speech synthesis. The autoregressive HMM uses the same model for parameter estimation and synthesis in a consistent way, in contrast to the standard approach to statistical parametric speech synthesis. It supports easy and efficient parameter estimation using expectation maximization, in contrast to the trajectory HMM. At the same time its similarities to the standard approach allow use of established high quality synthesis algorithms such as speech parameter generation considering global variance. The autoregressive HMM also supports a speech parameter generation algorithm not available for the standard approach or the trajectory HMM and which has particular advantages in the domain of real-time, low latency synthesis. We show how to do efficient parameter estimation and synthesis with the autoregressive HMM and look at some of the similarities and differences between the standard approach, the trajectory HMM and the autoregressive HMM. We compare the three approaches in subjective and objective evaluations. We also systematically investigate which choices of parameters such as autoregressive order and number of states are optimal for the autoregressive HMM.This work was supported in part by the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement 213845 (EMIME) and in part by EPSRC Programme Grant EP/I031022/1 (Natural Speech Technology).Copyright 2013 IEEE
Translatotron 3: Speech to Speech Translation with Monolingual Data
This paper presents Translatotron 3, a novel approach to train a direct
speech-to-speech translation model from monolingual speech-text datasets only
in a fully unsupervised manner. Translatotron 3 combines masked autoencoder,
unsupervised embedding mapping, and back-translation to achieve this goal.
Experimental results in speech-to-speech translation tasks between Spanish and
English show that Translatotron 3 outperforms a baseline cascade system,
reporting 18.14 BLEU points improvement on the synthesized
Unpaired-Conversational dataset. In contrast to supervised approaches that
necessitate real paired data, which is unavailable, or specialized modeling to
replicate para-/non-linguistic information, Translatotron 3 showcases its
capability to retain para-/non-linguistic such as pauses, speaking rates, and
speaker identity. Audio samples can be found in our website
http://google-research.github.io/lingvo-lab/translatotron
- …