293 research outputs found
Resistivity and optical conductivity of cuprates within the t-J model
The optical conductivity and the d.c. resistivity
within the extended t-J model on a square lattice, as relevant to high-
cuprates, are reinvestigated using the exact-diagonalization method for small
systems, improved by performing a twisted boundary condition averaging. The
influence of the next-nearest-neighbor hopping is also considered. The
behaviour of results at intermediate doping is consistent with a
marginal-Fermi-liquid scenario and in the case of for follows
the power law with consistent
with experiments. At low doping for develops a
shoulder at , consistent with the observed mid-infrared
peak in experiments, accompanied by a shallow dip for . This
region is characterized by the resistivity saturation, whereas a more coherent
transport appears at producing a more pronounced decrease in
. The behavior of the normalized resistivity is within a
factor of 2 quantitatively consistent with experiments in cuprates.Comment: 8 pages, 10 figure
Abomasal displacement in cattle
Left abomasal displacement can be treated among other techniques also with the rolling technique accompanied with a percutaneus paramedian abomasopexy using toggle pin fixators of cornel wood. This method is reliable, quick and cheap
Does Sustainable Management of Biodegradable Sludge Exist at All? A BACOM Project Case
Due to the modern lifestyle and the formation of large amounts of biodegradable sludge, its processing is becoming a demanding technological and logistical project. Stabilization with pozzolanic ash and its reuse in construction industry represents one of the possible sustainable solutions. Mixing biodegradable sludge with pozzolanic ash triggers a set of physiochemical reactions such as converting heavy metals into insoluble hydroxides, forming heat due to hydration of metal oxides, and forming of a set of pozzolanic structures due to high pH and heat. Studies showed that the produced material is biologically and chemically inert and safe for use under controlled conditions. Comparison of different most widely used technologies, using life cycle analysis, indicated advantages of using material conversion of biodegradable sludge into materials rather than using it for energetic purposes. Based on the calculation of their negative influence on the environment and human health, the analyzed technologies can be categorized from those with less impact to those with higher impact: stabilization with ash < pyrolysis < anaerobic digestion < composting < landfilling. The life cycle assessment (LCA) showed that the decentralized technologies enabling material use of biodegradable sludge are more sustainable than centralized installations for composting biodegradable sludge in large quantities
ANALYSIS OF ELECTROCOAGULATION PROCESS EFFICIENCY OF COMPOST LEACHATE WITH THE FIRST ORDER KINETIC MODEL
Large quantities of leachate are generated from the water release during the decomposition of the biodegradable waste. The composition of compost leachate is very complex and its treatment is necessary before releasing into the environment. The possibilities of treating compost leachate by electrocoagulation have been extensively studied. The scope of this work was to investigate applicability of the first order kinetic model for degradation of metal and organic compounds from compost leachate by electrocoagulation process. Experimental results showed 75 % removal efficiency of Cu2+ and 65 % of Zn2+, while chemical oxygen demand was reduced by 36 %. According to obtained kinetic parameters, simulation of metal removal efficiency was performed in batch reactor. This way optimal electrocoagulation time which is needed for 95 % efficiency of metal removal was determined at 120th min for Zn2+ and 102nd min for Cu2+
Adsorption and antibacterial activity of soluble and precipitated chitosan on cellulose viscose fibers
The aim and novelty of this work was to compare the adsorption of totally-soluble chitosan (acidic solution) against the adsorption of precipitated chitosan, onto cellulose fibers. The influences of both these chitosan-adsorption procedures on a final amino groupćs content in functionalized cellulose fibers were studied, using potentiometric titration and the conventional spectrophotometric C.I. Acid Orange 7 method. Surface modification and adsorption of chitosan were, in addition, monitored by determining XPS spectra. The antimicrobial activities of both chitosan- functionalised cellulose fibers were examined, in regard to pathogen bacteria and fungus
Thermoelectric power in one-dimensional Hubbard model
The thermoelectric power S is studied within the one-dimensional Hubbard
model using the linear response theory and the numerical exact-diagonalization
method for small systems. While both the diagonal and off-diagonal dynamical
correlation functions of particle and energy current are singular within the
model even at temperature T>0, S behaves regularly as a function of frequency
and T. Dependence on the electron density n below the half-filling
reveals a change of sign of S at n_0=0.73+/-0.07 due to strong correlations, in
the whole T range considered. Approaching half-filling S is hole-like and can
become large for U>>t although decreasing with T.Comment: 6 pages, 4 figure
- …