4 research outputs found

    A Transient "Changing-look'' Active Galactic Nucleus Resolved on Month Timescales from First-year Sloan Digital Sky Survey V Data

    Get PDF
    We report the discovery of a new ``changing-look'' active galactic nucleus (CLAGN) event, in the quasar SDSS J162829.17+432948.5 at z=0.2603, identified through repeat spectroscopy from the fifth Sloan Digital Sky Survey (SDSS-V). Optical photometry taken during 2020--2021 shows a dramatic dimming of Δ{\Delta}g≈{\approx}1 mag, followed by a rapid recovery on a timescale of several months, with the â‰Č{\lesssim}2 month period of rebrightening captured in new SDSS-V and Las Cumbres Observatory spectroscopy. This is one of the fastest CLAGN transitions observed to date. Archival observations suggest that the object experienced a much more gradual dimming over the period of 2011--2013. Our spectroscopy shows that the photometric changes were accompanied by dramatic variations in the quasar-like continuum and broad-line emission. The excellent agreement between the pre- and postdip photometric and spectroscopic appearances of the source, as well as the fact that the dimmest spectra can be reproduced by applying a single extinction law to the brighter spectral states, favor a variable line-of-sight obscuration as the driver of the observed transitions. Such an interpretation faces several theoretical challenges, and thus an alternative accretion-driven scenario cannot be excluded. The recent events observed in this quasar highlight the importance of spectroscopic monitoring of large active galactic nucleus samples on weeks-to-months timescales, which the SDSS-V is designed to achieve.Comment: Published in ApJ

    The SDSS-V Black Hole Mapper Reverberation Mapping Project: Unusual Broad-Line Variability in a Luminous Quasar

    Get PDF
    We present a high-cadence multi-epoch analysis of dramatic variability of three broad emission lines (MgII, HÎČ\beta, and Hα\alpha) in the spectra of the luminous quasar (λLλ\lambda L_{\lambda}(5100\r{A}) = 4.7×10444.7 \times 10^{44} erg s−1^{-1}) SDSS J141041.25+531849.0 at z=0.359z = 0.359 with 127 spectroscopic epochs over 9 years of monitoring (2013-2022). We observe anti-correlations between the broad emission-line widths and flux in all three emission lines, indicating that all three broad emission lines "breathe" in response to stochastic continuum variations. We also observe dramatic radial velocity shifts in all three broad emission lines, ranging from Δv\Delta{v} ∌\sim400 km s−1^{-1} to ∌\sim800 km s−1^{-1}, that vary over the course of the monitoring period. Our preferred explanation for the broad-line variability is complex kinematics in the broad-line region gas. We suggest a model for the broad-line variability that includes a combination of gas inflow with a radial gradient, an azimuthal asymmetry (e.g., a hot spot), superimposed on the stochastic flux-driven changes to the optimal emission region ("line breathing"). Similar instances of line-profile variability due to complex gas kinematics around quasars are likely to represent an important source of false positives in radial velocity searches for binary black holes, which typically lack the kind of high-cadence data we analyze here. The long-duration, wide-field, and many-epoch spectroscopic monitoring of SDSS-V BHM-RM provides an excellent opportunity for identifying and characterizing broad emission-line variability, and the inferred nature of the inner gas environment, of luminous quasars
    corecore