11 research outputs found

    Peripheral nerve induces macrophage neurotrophic activities: regulation of neuronal process outgrowth, intracellular signaling and synaptic function.

    Get PDF
    Abstract Rat cortical neurons cultured in conditioned media from human monocyte-derived macrophages (MDM) show increased neuronal protein synthesis, neurite outgrowth, mitogen-activating protein kinase activity, and synaptic function. Neurotrophic properties of human MDMconditioned media are significantly enhanced by human peripheral nerve and to a more limited extent by CD40 ligand pre-stimulation. Such positive effects of MDM secretions on neuronal function parallel the secretion of brain-derived neurotrophic factor (BDNF). MDM activation cues may serve to balance toxic activities produced during neurodegenerative diseases and thus, under certain circumstances, mitigate neuronal degeneration.

    Layered PLG scaffolds for in vivo plasmid delivery.

    No full text
    Gene delivery from tissue engineering scaffolds can induce localized expression of tissue inductive factors to direct the function of progenitor cells, either endogenous or transplanted. In this report, we developed a layering approach for fabricating scaffolds with encapsulated plasmid, and investigated in vivo gene transfer following implantation into intraperitoneal fat, a widely used site for cell transplantation. Porous poly(lactide-co-glycolide) (PLG) scaffolds were fabricated using a gas foaming method, in which a non-porous layer containing plasmid was inserted between two porous polymer layers. The layered scaffold design decouples the scaffold structural requirements from its function as a drug delivery vehicle, and significantly increased the plasmid incorporation efficiency relative to scaffolds formed without layers. For multiple plasmid doses (200, 400, and 800mug), transgene expression levels peaked during the first few days and then declined over a period of 1-2 weeks. Transfected cells were observed both in the surrounding adipose tissue and within the scaffold interior. Macrophages were identified as an abundantly transfected cell type. Scaffolds delivering plasmid encoding fibroblast growth factor-2 (FGF-2) stimulated a 40% increase in the total vascular volume fraction relative to controls at 2 weeks. Scaffold-based gene delivery systems capable of localized transgene expression provide a platform for inductive and cell transplantation approaches in regenerative medicine

    Vascular endothelial growth factor and fibroblast growth factor 2 delivery from spinal cord bridges to enhance angiogenesis following injury.

    No full text
    The host response to spinal cord injury can lead to an ischemic environment that can induce cell death and limits cell transplantation approaches to promote spinal cord regeneration. Spinal cord bridges that provide a localized and sustained release of vascular endothelial growth factor (VEGF) and fibroblast growth factor 2 (FGF-2) were investigated for their ability to promote angiogenesis and nerve growth within the injury. Bridges were fabricated by fusion of poly(lactide-co-glycolide) microspheres using a gas foaming/particulate leaching technique, and proteins were incorporated by encapsulation into the microspheres and/or mixing with the microspheres before foaming. Compared to the mixing method, encapsulation reduced the losses during leaching and had a slower protein release, while VEGF was released more rapidly than FGF-2. In vivo implantation of bridges loaded with VEGF enhanced the levels of VEGF within the injury at 1 week, and bridges releasing VEGF and FGF-2 increased the infiltration of endothelial cells and the formation of blood vessel at 6 weeks postimplantation. Additionally, substantial neurofilament staining was observed within the bridge; however, no significant difference was observed between bridges with or without protein. Bridges releasing angiogenic factors may provide an approach to overcome an ischemic environment that limits regeneration and cell transplantation-based approaches. © 2011 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2011

    Multiple Channel Bridges for Spinal Cord Injury: Cellular Characterization of Host Response

    No full text
    Bridges for treatment of the injured spinal cord must stabilize the injury site to prevent secondary damage and create a permissive environment that promotes regeneration. The host response to the bridge is central to creating a permissive environment, as the cell types that respond to the injury have the potential to secrete both stimulatory and inhibitory factors. We investigated multiple channel bridges for spinal cord regeneration and correlated the bridge structure to cell infiltration and axonal elongation. Poly(lactide-co-glycolide) bridges were fabricated by a gas foaming/particulate leaching process. Channels within the bridge had diameters of 150 or 250 μm, and the main body of the bridge was highly porous with a controllable pore size. Upon implantation in a rat spinal cord hemisection site, cells infiltrated into the bridge pores and channels, with the pore size influencing the rate of infiltration. The pores had significant cell infiltration, including fibroblasts, macrophages, S-100β-positive cells, and endothelial cells. The channels of the bridge were completely infiltrated with cells, which had aligned axially, and consisted primarily of fibroblasts, S-100β-positive cells, and endothelial cells. Reactive astrocytes were observed primarily outside of the bridge, and staining for chondroitin sulfate proteoglycans was decreased in the region surrounding the bridge relative to studies without bridges. Neurofilament staining revealed a preferential growth of the neural fibers within the bridge channels relative to the pores. Multiple channel bridges capable of supporting cellular infiltration, creating a permissive environment, and directing the growth of neural fibers have potential for promoting and directing spinal cord regeneration

    Long-term characterization of axon regeneration and matrix changes using multiple channel bridges for spinal cord regeneration.

    No full text
    Spinal cord injury (SCI) results in loss of sensory and motor function below the level of injury and has limited available therapies. The host response to SCI is typified by limited endogenous repair, and biomaterial bridges offer the potential to alter the microenvironment to promote regeneration. Porous multiple channel bridges implanted into the injury provide stability to limit secondary damage and support cell infiltration that limits cavity formation. At the same time, the channels provide a path that physically directs axon growth across the injury. Using a rat spinal cord hemisection injury model, we investigated the dynamics of axon growth, myelination, and scar formation within and around the bridge in vivo for 6 months, at which time the bridge has fully degraded. Axons grew into and through the channels, and the density increased overtime, resulting in the greatest axon density at 6 months postimplantation, despite complete degradation of the bridge by that time point. Furthermore, the persistence of these axons contrasts with reports of axonal dieback in other models and is consistent with axon stability resulting from some degree of connectivity. Immunostaining of axons revealed both motor and sensory origins of the axons found in the channels of the bridge. Extensive myelination was observed throughout the bridge at 6 months, with centrally located and peripheral channels seemingly myelinated by oligodendrocytes and Schwann cells, respectively. Chondroitin sulfate proteoglycan deposition was restricted to the edges of the bridge, was greatest at 1 week, and significantly decreased by 6 weeks. The dynamics of collagen I and IV, laminin, and fibronectin deposition varied with time. These studies demonstrate that the bridge structure can support substantial long-term axon growth and myelination with limited scar formation

    Long-Term Characterization of Axon Regeneration and Matrix Changes Using Multiple Channel Bridges for Spinal Cord Regeneration

    No full text
    Spinal cord injury (SCI) results in loss of sensory and motor function below the level of injury and has limited available therapies. The host response to SCI is typified by limited endogenous repair, and biomaterial bridges offer the potential to alter the microenvironment to promote regeneration. Porous multiple channel bridges implanted into the injury provide stability to limit secondary damage and support cell infiltration that limits cavity formation. At the same time, the channels provide a path that physically directs axon growth across the injury. Using a rat spinal cord hemisection injury model, we investigated the dynamics of axon growth, myelination, and scar formation within and around the bridge in vivo for 6 months, at which time the bridge has fully degraded. Axons grew into and through the channels, and the density increased overtime, resulting in the greatest axon density at 6 months postimplantation, despite complete degradation of the bridge by that time point. Furthermore, the persistence of these axons contrasts with reports of axonal dieback in other models and is consistent with axon stability resulting from some degree of connectivity. Immunostaining of axons revealed both motor and sensory origins of the axons found in the channels of the bridge. Extensive myelination was observed throughout the bridge at 6 months, with centrally located and peripheral channels seemingly myelinated by oligodendrocytes and Schwann cells, respectively. Chondroitin sulfate proteoglycan deposition was restricted to the edges of the bridge, was greatest at 1 week, and significantly decreased by 6 weeks. The dynamics of collagen I and IV, laminin, and fibronectin deposition varied with time. These studies demonstrate that the bridge structure can support substantial long-term axon growth and myelination with limited scar formation
    corecore