11 research outputs found

    Generating synthetic computed tomography for radiotherapy: SynthRAD2023 challenge report

    Get PDF
    Radiation therapy plays a crucial role in cancer treatment, necessitating precise delivery of radiation to tumors while sparing healthy tissues over multiple days. Computed tomography (CT) is integral for treatment planning, offering electron density data crucial for accurate dose calculations. However, accurately representing patient anatomy is challenging, especially in adaptive radiotherapy, where CT is not acquired daily. Magnetic resonance imaging (MRI) provides superior soft-tissue contrast. Still, it lacks electron density information, while cone beam CT (CBCT) lacks direct electron density calibration and is mainly used for patient positioning. Adopting MRI-only or CBCT-based adaptive radiotherapy eliminates the need for CT planning but presents challenges. Synthetic CT (sCT) generation techniques aim to address these challenges by using image synthesis to bridge the gap between MRI, CBCT, and CT. The SynthRAD2023 challenge was organized to compare synthetic CT generation methods using multi-center ground truth data from 1080 patients, divided into two tasks: (1) MRI-to-CT and (2) CBCT-to-CT. The evaluation included image similarity and dose-based metrics from proton and photon plans. The challenge attracted significant participation, with 617 registrations and 22/17 valid submissions for tasks 1/2. Top-performing teams achieved high structural similarity indices (≥0.87/0.90) and gamma pass rates for photon (≥98.1%/99.0%) and proton (≥97.3%/97.0%) plans. However, no significant correlation was found between image similarity metrics and dose accuracy, emphasizing the need for dose evaluation when assessing the clinical applicability of sCT. SynthRAD2023 facilitated the investigation and benchmarking of sCT generation techniques, providing insights for developing MRI-only and CBCT-based adaptive radiotherapy. It showcased the growing capacity of deep learning to produce high-quality sCT, reducing reliance on conventional CT for treatment planning

    Rain Pattern Deeply Reshaped Total Phosphorus Load Pattern in Watershed: A Case Study from Northern China

    No full text
    Excessive phosphorus in aquatic systems poses a threat to ecosystem stability and human health. Precipitation has a profound influence on the phosphorus biogeochemical process; however, it has been inadequately considered at the watershed scale. In this study, the Bayesian latent variable regression model was utilized to quantify the impact of rainfall on the concentration of total phosphorus using daily monitoring data from 2019 to 2021. The results revealed a piecewise linear relationship between total phosphorus concentration and precipitation. It was further inferred that the breakpoint (The total rainfall during a single rainfall event equal to 39.4 ± 0.45 mm) represented the tipping point for the transformation of the primary river runoff generation mechanism. Subsequently, the excess phosphorus load caused by rainfall events was estimated in the Shahe basin by combining the regional nutrient management approach with the results of the Bayesian latent variable regression model. The results indicated that rainfall events were one of the most significant sources of TP loads from 2006 to 2017, accounting for 28.2% of the total. Non-artificial land, including farmland, forests, and grasslands, serves as the primary source of the excess phosphorus load resulting from rainfall events. This study provides insights into how to quantify the phosphorus load resulting from rainfall events at the basin scale, which is valuable for phosphorus management. Environmental managers should prioritize the regulation of phosphorus in non-artificial land moving forward. Implementing hierarchical management based on calibrated curve numbers and soil phosphorus content could prove to be an efficient approach for regulating phosphorus in the watershed

    Early Palaeozoic sub-arc chromitite-bearing peridotite in the Kudi ophiolite on the westernmost Tibetan Plateau

    No full text
    <p>A chromite deposit was discovered in the Kudi ophiolite in the Palaeozoic western Kunlun orogenic belt. Chromite forms elongated (<2 m in width) and banded chromitite bodies (<0.1 m in width for each band) in dunite and podiform chromitite bodies (<1.5 m in width) in harzburgite. Dunite is classified into two types. Type I dunite hosting massive and banded chromitites shows low Fo in olivine (88.1–90.9), moderate Cr<sup>#</sup> [=Cr/(Cr + Al), 0.47–0.56] in chromite, and a positively sloped primitive mantle-normalized platinum group elements (PGE) pattern, suggesting that it is a cumulate of a mafic melt. Harzburgite and type II dunite show olivine with high Fo (>91.1) and chromite with moderate to high Cr<sup>#</sup> (0.44–0.61), and flat to negatively sloped primitive mantle-normalized PGE patterns, indicating that they are residual mantle peridotite after partial melting. Chromite in all three types of chromitites has relatively uniform moderate values Cr<sup>#</sup> ranging from 0.43 to 0.56. Massive chromitite contains euhedral chromite with high TiO<sub>2</sub> (0.40–0.43 wt.%) and has a positively sloped primitive mantle-normalized PGE pattern, suggesting that it represents a cumulate of a melt. Rocks containing disseminated and banded chromite show overall low total PGE, < 117 ppb, and a negatively sloped primitive mantle-normalized PGE pattern. Chromite grains in these two types of occurrences are irregular in shape and enclose olivine grains, suggesting that chromite formed later than olivine. We suggest that chromite-oversaturated melt penetrated into the pre-existing dunite and crystallized chromite. The oxygen fugacity (<i>f</i>O<sub>2</sub> values of chromitites and peridotites are high, ranging from FMQ+0.8 (0.8 logarithmic unit above the fayalite-magnetite-quartz buffer) to FMQ+2.3 for chromitites and from FMQ+0.9 to FMQ+2.8 for peridotites (dunite and harzburgite). The mineral compositions and high <i>f</i>O<sub>2</sub> values as well as estimated parental magma compositions of the chromitites suggest that the Kudi ophiolite formed in a sub-arc setting.</p

    A Treatment Technology for Optimizing the Stress State of Railway Tunnel Bottom Structure

    No full text
    With the continuous increase of railway transportation volume, the aging problem of railway tunnel bottom structure is becoming more and more serious, which seriously threatens the safe operation of trains. Based on the cause analysis and field detection of the defects at the railway tunnel bottom structure, the “Anchor-Grouting-Drainage” treatment technology of the railway tunnel bottom structure is summarized. The research shows that (1) the technology is simple and can effectively repair the defects of railway tunnel bottom structure under the conditions of the narrow site, short time of maintenance skylight, strict requirements of track size variation, and no interference with the normal operation of the train, which has great significance and broad application prospect. (2) The drainage system of the existing railway tunnel bottom structure can be applied to the reconstruction of the railway tunnel bottom structure. The high-strength transverse diversion structure at the bottom of the tunnel has the advantages of strong bearing capacity, large drainage capacity, and corrosion resistance, which can provide a reference for the subsequent implementation of the reconstruction project at the railway tunnel bottom structure
    corecore