3 research outputs found

    Heart-Type Fatty Acid Binding Protein Binds Long-Chain Acylcarnitines and Protects against Lipotoxicity

    Get PDF
    Funding Information: This research was funded by the European Union’s Horizon 2020 research and innovation program project FAT4BRAIN under grant agreement No. 857394 and by Latvian Institute of Organic Synthesis internal student grants IG-2022-04 and IG-2023-04 (to D.Z.-G.). Publisher Copyright: © 2023 by the authors.Heart-type fatty-acid binding protein (FABP3) is an essential cytosolic lipid transport protein found in cardiomyocytes. FABP3 binds fatty acids (FAs) reversibly and with high affinity. Acylcarnitines (ACs) are an esterified form of FAs that play an important role in cellular energy metabolism. However, an increased concentration of ACs can exert detrimental effects on cardiac mitochondria and lead to severe cardiac damage. In the present study, we evaluated the ability of FABP3 to bind long-chain ACs (LCACs) and protect cells from their harmful effects. We characterized the novel binding mechanism between FABP3 and LCACs by a cytotoxicity assay, nuclear magnetic resonance, and isothermal titration calorimetry. Our data demonstrate that FABP3 is capable of binding both FAs and LCACs as well as decreasing the cytotoxicity of LCACs. Our findings reveal that LCACs and FAs compete for the binding site of FABP3. Thus, the protective mechanism of FABP3 is found to be concentration dependent.publishersversionPeer reviewe

    Aziridine-2-carboxylic acid derivatives and its open-ring isomers as a novel PDIA1 inhibitors

    No full text
    Acyl derivatives of aziridine-2-carboxylic acid have been synthesized and tested as PDIA1 inhibitors. Calculations of charge value and distribution in aziridine ring system and some alkylating agents were performed. For the first time was found that acyl derivatives of aziridine-2-carboxylic acid are weak to moderately active PDIA1 inhibitors

    Exploring aspartic protease inhibitor binding to design selective antimalarials

    No full text
    Selectivity is a major issue in the development of drugs targeting pathogen aspartic proteases. Here we explore the selectivity determining factors by studying specifically designed malaria aspartic protease (plasmepsin) open-flap inhibitors. Metadynamics simulations are used to uncover the complex binding/unbinding pathways of these inhibitors, and describe the critical transition states in atomistic resolution. The simulation results are compared to experimentally determined enzymatic activities. Our findings demonstrate that plasmepsin inhibitor selectivity can be achieved by targeting the flap loop with hydrophobic substituents that enable ligand binding under the flap loop, as such behaviour is not observed for several other aspartic proteases. The ability to estimate compound selectivity before they are synthesized is of great importance in drug design, therefore, we expect that our approach will be useful in selective inhibitor design not only against aspartic proteases, but other enzyme classes as well
    corecore