2 research outputs found

    On The Nucleation Of Gap/gaas And The Effect Of Buried Stress Fields

    No full text
    We have recently shown that spatial ordering for epitaxially grown InP dots can be obtained using the periodic stress field of compositional modulation on the InGaP buffer layer. The aim of this present work is to study the growth of films of GaP by Chemical Beam Epitaxy (CBE), with in-situ monitoring by Reflection High Energy Electron Diffraction (RHEED), on layers of unstressed and stressed GaAs. Complementary, we have studied the role of a buried InP dot array on GaP nucleation in order to obtain three-dimensional structures. In both cases, the topographical characteristics of the samples were investigated by Atomic Force Microscopy (AFM) in non-contact mode. Thus vertically-coupled quantum dots of different materials have been obtained keeping the in-place spatial ordering originated from the composition modulation. © 2006 Materials Research Society.891133138Shchukin, V., Bimberg, D., (1999) Rev. Mod. Phys., 71, p. 1125Lee, H., Johnson, J.A., He, M.Y., Speck, J.S., Petroff, P.M., (2001) Appl. Phys. Lett., 78, p. 105Lee, C.-S., Kahng, B., Barabási, A.-L., (2001) Appl. Phys. Lett., 78, p. 984Bortoleto, J.R.R., Gutiérrez, H.R., Cotta, M.A., Bettini, J., Cardoso, L.P., De Carvalho, M.M.G., (2003) Appl. Phys. Lett., 82, p. 3523Henoc, P., Izrael, A., Quilec, M., Launois, H., (1982) Appl. Phys. Lett., 40, p. 963Lapierre, R.R., Okada, T., Robinson, B.J., Thompson, D.A., Weatherly, G.C., (1995) J. Cryst. Growth, 155, p. 1Perió, F., Cornet, A., Morante, J.R., Georgakilas, A., Wood, C., Christou, A., (1995) Appl. Phys. Lett., 66, p. 2391Okada, T., Weatherly, G.C., McComb, D.W., (1997) J. Appl. Phys., 81, p. 2185Guyer, J.E., Barnett, S.A., Voorhees, P.W., (2000) J. Cryst. Growth, 217, p. 1Leonard, F., Desai, R.C., (2002) Appl. Phys. Lett., 74, p. 40Huang, Z.F., Desai, R.C., (2002) Phys Rev. B, 65, p. 205419Spencer, B.J., Voorhees, P.W., Tersoff, J., (2000) Apll. Phys. Lett., 76, p. 3022Spencer, B.J., Voorhees, P.W., Tersoff, J., (2001) Phys. Rev. B, 64, p. 235318Bortoleto, J.R.R., Gutiérrez, H.R., Bettini, J., Cotta, M.A., (2005) Appl. Phys. Lett., 87, p. 013105Xie, Q., Madhukar, A., Chen, P., Kobayashi, N.P., (1995) Phys. Rev. Lett., 75, p. 2542Medeiros-Ribeiro, G., Maltez, R.L., Bernussi, A.A., Ugarte, D., De Carvalho Jr., W., Seeding of InP islands on InAs quantum dot templates (2001) J. Appl. Phys., 89, p. 6548Leonard, D., Pond, K., Petroff, P.M., Critical layer thickness for self-assembled InAs islands on GaAs (1994) Phys. Rev. B, 50, p. 11867Kobayashi, N.P., Ramachandran, T.R., Chen, P., Madhukar, A., In situ, atomic force microscope studies of the evolution of InAs three-dimensional islands on GaAs(001) (1996) Appl. Phys. Lett., 68, p. 3299Barabási, A.L., Thermodynamic and kinetic mechanisms in self-assembled quantum dot formation (1999) Mat. Sci. Eng. B, 67, p. 23Suekane, O., Hasegawa, S., Takata, M., Okui, T., Nakashima, H., Scanning tunneling microscopy study of InAs islands grown on GaAs(001) substrates (2002) Mat. Sci. Eng. B, 88, p. 158Saito, H., Nishi, K., Sugou, S., Shape transition of InAs quantum dots by growth at high temperature (1999) Appl. Phys. Lett., 74, p. 122

    Resonant X-ray Scattering From Self-assembled Inpgaas (001) Islands: Understanding The Chemical Structure Of Quaternary Quantum Dots

    No full text
    Lattice parameter profiles and the chemical structure of InP self-assembled islands grown on GaAs(001) were determined with x-ray resonant scattering. By accessing four different photon energies, near x-ray absorption edges of two of the atomic species present on the samples, composition maps of all four atomic constituents of these islands were obtained. This experiment was performed for samples grown at two different temperatures and the effect of temperature was associated to Ga-interdiffusion and strain relief in the dots. © 2008 American Institute of Physics.922Klimov, V.I., Mikhailovsky, A.A., Xu, S., Malko, A., Hollingsworth, J.A., Leatherdale, C.A., Eisler, H.-J., Imamoglu, A., (2000) Science, 290, p. 314. , See, e. g., SCIEAS 0036-8075 10.1126/science.290.5490.314, ();, Science SCIEAS 0036-8075 10.1126/science.1109815 308, 1158 (2005)Cullis, A.G., Norris, D.J., Walther, T., Migliorato, M.A., Hopkinson, M., (2002) Phys. Rev. B, 66, p. 081305. , PRBMDO 0163-1829 10.1103/PhysRevB.66.081305Kegel, I., Metzger, T.H., Fratzl, P., Peisl, J., Lorke, A., Garcia, J.M., Petroff, P.M., (1999) Europhys. Lett., 45, p. 222. , EULEEJ 0295-5075 10.1209/epl/i1999-00150-yGray, J.L., Singh, N., Elzey, D.M., Hull, R., Floro, J.A., (2004) Phys. Rev. Lett., 92, p. 135504. , PRLTAO 0031-9007 10.1103/PhysRevLett.92.135504Medeiros-Ribeiro, G., Williams, R.S., (2007) Nano Lett., 7, p. 223. , NALEFD 1530-6984 10.1021/nl062530kMalachias, A., Magalhães-Paniago, R., Neves, B.R.A., Rodrigues, W.N., Moreira, M.V.B., Pfannes, H.-D., De Oliveira, A.G., Metzger, T.H., (2001) Appl. Phys. Lett., 79, p. 4342. , APPLAB 0003-6951 10.1063/1.1427421Magalhães-Paniago, R., Medeiros-Ribeiro, G., Malachias, A., Kycia, S., Kamins, T.I., Stan Williams, R., Schülli, T.U., Bauer, G., (2002) Phys. Rev. B, 66, p. 245312. , PRBMDO 0163-1829 10.1103/PhysRevB.66.245312, ();, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.90.066105 90, 066105 (2003)Tchernycheva, M., Cirlin, G.E., Patriarche, G., Travers, L., Zwiller, V., Perinetti, U., Harmand, J.-C., (2007) Nano Lett., 7, p. 1500. , NALEFD 1530-6984, (Liu, N., Tersoff, J., Baklenov, O., Holmes Jr., A.L., Shih, C.K., (2000) Phys. Rev. Lett., 84, p. 334. , PRLTAO 0031-9007 10.1103/PhysRevLett.84.334Ribeiro, E., Maltez, R.L., Carvalho Jr., W., Ugarte, D., Medeiros-Ribeiro, G., (2002) Appl. Phys. Lett., 81, p. 2953. , APPLAB 0003-6951 10.1063/1.151321
    corecore