124 research outputs found

    Practical Advantages of Almost-Balanced-Weak-Values Metrological Techniques

    Get PDF
    Precision measurements of ultra-small linear velocities of one of the mirrors in a Michelson interferometer are performed using two different weak-values techniques. We show that the technique of Almost-Balanced Weak Values (ABWV) offers practical advantages over the technique of Weak-Value Amplification (WVA), resulting in larger signal-to-noise ratios and the possibility of longer integration times due to robustness to slow drifts. As an example of the performance of the ABWV protocol we report a velocity sensitivity of 60 fm/s after 40 hours of integration time. The sensitivity of the Doppler shift due to the moving mirror is of 150 nHz

    A quantum register using collective excitations in a Bose-Einstein condensate

    Full text link
    A qubit made up of an ensemble of atoms is attractive due to its resistance to atom losses, and many proposals to realize such a qubit are based on the Rydberg blockade effect. In this work, we instead consider an experimentally feasible protocol to coherently load a spin-dependent optical lattice from a spatially overlapping Bose--Einstein condensate. Identifying each lattice site as a qubit, with an empty or filled site as the qubit basis, we discuss how high-fidelity single-qubit operations, two-qubit gates between arbitrary pairs of qubits, and nondestructive measurements could be performed. In this setup, the effect of atom losses has been mitigated, the atoms never need to be removed from the ground state manifold, and separate storage and computational bases for the qubits are not required, all of which can be significant sources of decoherence in many other types of atomic qubits.Comment: 24+8 pages, 9 figure

    Practical Advantages of Almost-Balanced-Weak-Value Metrological Techniques

    Get PDF
    Precision measurements of ultrasmall linear velocities of one of the mirrors in a Michelson interferometer are performed using two different weak-value techniques. We show that the technique of almost-balanced weak values (ABWV) offers practical advantages over the technique of weak-value amplification, resulting in larger signal-to-noise ratios and the possibility of longer integration times due to robustness to slow drifts. As an example of the performance of the ABWV protocol we report a velocity sensitivity of 60 fm/s after 40 h of integration time. The sensitivity of the Doppler shift due to the moving mirror is 150 nHz

    Improvements on Recommender System based on Mathematical Principles

    Full text link
    In this article, we will research the Recommender System's implementation about how it works and the algorithms used. We will explain the Recommender System's algorithms based on mathematical principles, and find feasible methods for improvements. The algorithms based on probability have its significance in Recommender System, we will describe how they help to increase the accuracy and speed of the algorithms. Both the weakness and the strength of two different mathematical distance used to describe the similarity will be detailed illustrated in this article

    Variational principle for optimal quantum controls in quantum metrology

    Get PDF
    We develop a variational principle to determine the quantum controls and initial state which optimizes the quantum Fisher information, the quantity characterizing the precision in quantum metrology. When the set of available controls is limited, the exact optimal initial state and the optimal controls are in general dependent on the probe time, a feature missing in the unrestricted case. Yet, for time-independent Hamiltonians with restricted controls, the problem can be approximately reduced to the unconstrained case via the Floquet engineering. In particular, we find for magnetometry with a time-independent spin chain containing three-body interactions, even when the controls are restricted to one and two-body interaction, that the Heisenberg scaling can still be approximately achieved. Our results open the door to investigate quantum metrology under a limited set of available controls, of relevance to many-body quantum metrology in realistic scenarios.Comment: Close to the published versio

    Relationship between the cumulative exposure to atherogenic index of plasma and ischemic stroke: A retrospective cohort study

    Get PDF
    Background: Atherogenic index of plasma (AIP) has been demonstrated as a surrogate marker for ischemic stroke, but there is limited evidence for the effect of long-term elevation of AIP on ischemic stroke. Therefore, we aimed to characterize the relationship between cumulative exposure to AIP and the risk of ischemic stroke. Methods: A total of 54,123 participants in the Kailuan Study who attended consecutive health examinations in 2006, 2008, and 2010 and had no history of ischemic stroke or cancer were included. The time-weighted cumulative AIP (cumAIP) was calculated as a weighted sum of the mean AIP values for each time interval and then normalized to the total duration of exposure (2006–2010). Participants were divided into four groups according to quartile of cumAIP: the Q1 group, ≤ −0.50; Q2 group, − 0.50 to − 0.12; Q3 group, − 0.12 to 0.28; and Q4 group, ≥ 0.28. Cox proportional hazard models were used to evaluate the relationship between cumAIP and ischemic stroke by calculating hazard ratios (HRs) and 95% confidence intervals (95% CIs). Results: After a median follow-up of 11.03 years, a total of 2,742 new ischemic stroke events occurred. The risk of ischemic stroke increased with increasing quartile of cumAIP. After adjustment for potential confounders, Cox regression models showed that participants in the Q2, Q3, and Q4 groups had significantly higher risks of ischemic stroke than those in the Q1 group. The HRs (95% CIs) for ischemic stroke in the Q2, Q3, and Q4 groups were 1.17 (1.03, 1.32), 1.33 (1.18, 1.50), and 1.45 (1.28, 1.64), respectively. The longer duration of high AIP exposure was significantly associated with increased ischemic stroke risk. Conclusions: High cumulative AIP is associated with a higher risk of ischemic stroke, which implies that the long-term monitoring and maintenance of an appropriate AIP may help prevent such events
    • …
    corecore