12 research outputs found

    Is there a circumbinary planet around NSVS 14256825?

    Full text link
    The cyclic behaviour of (O-C) residuals of eclipse timings in the sdB+M eclipsing binary NSVS 14256825 was previously attributed to one or two Jovian-type circumbinary planets. We report 83 new eclipse timings that not only fill in the gaps in those already published but also extend the time span of the (O-C) diagram by three years. Based on the archival and our new data spanning over more than 17 years we re-examined the up to date system (O-C). The data revealed systematic, quasi-sinusoidal variation deviating from an older linear ephemeris by about 100 s. It also exhibits a maximum in the (O-C) near JD 2,456,400 that was previously unknown. We consider two most credible explanations of the (O-C) variability: the light propagation time due to the presence of an invisible companion in a distant circumbinary orbit, and magnetic cycles reshaping one of the binary components, known as the Applegate or Lanza-Rodono effect. We found that the latter mechanism is unlikely due to the insufficient energy budget of the M-dwarf secondary. In the framework of the third-body hypothesis, we obtained meaningful constraints on the Keplerian parameters of a putative companion and its mass. Our best-fitting model indicates that the observed quasi-periodic (O-C) variability can be explained by the presence of a brown dwarf with the minimal mass of 15 Jupiter masses rather than a planet, orbiting the binary in a moderately elliptical orbit (~ 0.175) with the period of ~ 10 years. Our analysis rules out two planets model proposed earlier.Comment: 17 pages, 9 figures, 4 tables, accepted to A

    Refining the prediction for OJ 287 next impact flare arrival epoch

    Full text link
    The bright blazar OJ~287 routinely parades high brightness bremsstrahlung flares which are explained as being a result of a secondary supermassive black hole (SMBH) impacting the accretion disk of a primary SMBH in a binary system. We begin by showing that these flares occur at times predicted by a simple analytical formula, based on the Kepler equation, which explains flares since 1888. The next impact flare, namely the flare number 26, is rather peculiar as it breaks the typical pattern of two impact flares per 12 year cycle. This will be the third bremsstrahlung flare of the current cycle that follows the already observed 2015 and 2019 impact flares from OJ~287. Unfortunately, astrophysical considerations make it difficult to predict the exact arrival epoch of the flare number 26. In the second part of the paper, we describe our recent OJ~287 observations. They show that the pre-flare light curve of flare number 22, observed in 2005, exhibits similar activity as the pre-flare light curve in 2022, preceding the expected flare number 26 in our model. We argue that the pre-flare activity most likely arises in the primary jet whose activity is modulated by the transit of the secondary SMBH through the accretion disk of the primary. Observing the next impact flare of OJ~287 in October 2022 will substantiate the theory of disk impacts in binary black hole systems.Comment: 16 pages, 2 figure

    Refining the 2022 OJ 287 impact flare arrival epoch

    Get PDF
    The bright blazar OJ~287 routinely parades high brightness bremsstrahlung flares, which are explained as being a result of a secondary supermassive black hole (SMBH) impacting the accretion disc of a more massive primary SMBH in a binary system. The accretion disc is not rigid but rather bends in a calculable way due to the tidal influence of the secondary. Below we refer to this phenomenon as a variable disc level. We begin by showing that these flares occur at times predicted by a simple analytical formula, based on general relativity inspired modified Kepler equation, which explains impact flares since 1888. The 2022 impact flare, namely flare number 26, is rather peculiar as it breaks the typical pattern of two impact flares per 12-year cycle. This is the third bremsstrahlung flare of the current cycle that follows the already observed 2015 and 2019 impact flares from OJ~287. It turns out that the arrival epoch of flare number 26 is sensitive to the level of primary SMBH's accretion disc relative to its mean level in our model. We incorporate these tidally induced changes in the level of the accretion disc to infer that the thermal flare should have occurred during July-August 2022, when it was not possible to observe it from the Earth. Thereafter, we explore possible observational evidence for certain pre-flare activity by employing spectral and polarimetric data from our campaigns in 2004/05 and 2021/22. We point out theoretical and observational implications of two observed mini-flares during January-February 2022.Comment: 29 pages, 6 figures, 1 table. arXiv admin note: text overlap with arXiv:2209.0836

    On the need of an ultramassive black hole in OJ 287

    Get PDF
    The highly variable blazar OJ~287 is commonly discussed as an example of a binary black hole system. The 130 year long optical light curve is well explained by a model where the central body is a massive black hole of 18.35×\times109^9 solar mass that supports a thin accretion disc. The secondary black hole of 0.15×\times109^9 solar mass impacts the disc twice during its 12 year orbit, and causes observable flares. Recently, it has been argued that an accretion disc with a typical AGN accretion rate and above mentioned central body mass should be at least six magnitudes brighter than OJ~287's host galaxy and would therefore be observationally excluded. Based on the observations of OJ~287's radio jet, detailed in Marscher and Jorstad (2011), and up-to-date accretion disc models of Azadi et al. (2022), we show that the V-band magnitude of the accretion disc is unlikely to exceed the host galaxy brightness by more than one magnitude, and could well be fainter than the host. This is because accretion power is necessary to launch the jet as well as to create electromagnetic radiation, distributed across many wavelengths, and not concentrated especially on the optical V-band. Further, we note that the claimed V-band concentration of accretion power leads to serious problems while interpreting observations of other Active Galactic Nuclei. Therefore, we infer that the mass of the primary black hole and its accretion rate do not need to be smaller than what is determined in the standard model for OJ~287

    The Gaia alerted fading of the FUor-type star Gaia21elv

    Full text link
    FU Orionis objects (FUors) are eruptive young stars, which exhibit outbursts that last from decades to a century. Due to the duration of their outbursts, and to the fact that only about two dozens of such sources are known, information on the end of their outbursts is limited. Here we analyse follow-up photometry and spectroscopy of Gaia21elv, a young stellar object, which had a several decades long outburst. It was reported as a Gaia science alert due to its recent fading by more than a magnitude. To study the fading of the source and look for signatures characteristic of FUors, we have obtained follow-up near infrared (NIR) spectra using Gemini South/IGRINS, and both optical and NIR spectra using VLT/X-SHOOTER. The spectra at both epochs show typical FUor signatures, such as a triangular shaped HH-band continuum, absorption-line dominated spectrum, and P Cygni profiles. In addition to the typical FUor signatures, [OI], [FeII], and [SII] were detected, suggesting the presence of a jet or disk wind. Fitting the spectral energy distributions with an accretion disc model suggests a decrease of the accretion rate between the brightest and faintest states. The rapid fading of the source in 2021 was most likely dominated by an increase of circumstellar extinction. The spectroscopy presented here confirms that Gaia21elv is a classical FUor, the third such object discovered among the Gaia science alerts.Comment: Accepted to MNRA

    Accretion Disk Parameters Determined from the Great 2015 Flare of OJ 287

    Get PDF
    In the binary black hole model of OJ 287, the secondary black hole orbits a much more massive primary, and impacts on the primary accretion disk at predictable times. We update the parameters of the disk, the viscosity, α, and the mass accretion rate, m. We find α = 0.26±0.1 and m=0.08±0.04 in Eddington units. The former value is consistent with Coroniti, and the latter with Marscher & Jorstad. Predictions are made for the 2019 July 30 superflare in OJ 287. We expect that it will take place simultaneously at the Spitzer infrared channels, as well as in the optical, and that therefore the timing of the flare in optical can be accurately determined from Spitzer observations. We also discuss in detail the light curve of the 2015 flare, and find that the radiating volume has regions where bremsstrahlung dominates, as well as regions that radiate primarily in synchrotron radiation. The former region produces the unpolarized first flare, while the latter region gives rise to a highly polarized second flare

    Observational Implications of OJ 287’s Predicted 2022 Disk Impact in the Black Hole Binary Model

    Get PDF
    We present a summary of the results of the OJ 287 observational campaign, which was carried out during the 2021/2022 observational season. This season is special in the binary model because the major axis of the precessing binary happens to lie almost exactly in the plane of the accretion disc of the primary. This leads to pairs of almost identical impacts between the secondary black hole and the accretion disk in 2005 and 2022. In 2005, a special flare called “blue flash” was observed 35 days after the disk impact, which should have also been verifiable in 2022. We did observe a similar flash and were able to obtain more details of its properties. We describe this in the framework of expanding cloud models. In addition, we were able to identify the flare arising exactly at the time of the disc crossing from its photo-polarimetric and gamma-ray properties. This is an important identification, as it directly confirms the orbit model. Moreover, we saw a huge flare that lasted only one day. We may understand this as the lighting up of the jet of the secondary black hole when its Roche lobe is suddenly flooded by the gas from the primary disk. Therefore, this may be the first time we directly observed the secondary black hole in the OJ 287 binary system

    Polarization and Spectral Energy Distribution in OJ 287 during the 2016/17 Outbursts

    Get PDF
    We report optical photometric and polarimetric observations of the blazar OJ 287 gathered during 2016/17. The high level of activity, noticed after the General Relativity Centenary flare, is argued to be part of the follow-up flares that exhibited high levels of polarization and originated in the primary black hole jet. We propose that the follow-up flares were induced as a result of accretion disk perturbations, traveling from the site of impact towards the primary SMBH. The timings inferred from our observations allowed us to estimate the propagation speed of these perturbations. Additionally, we make predictions for the future brightness of OJ 287.</p

    The TESS Grand Unified Hot Jupiter Survey. II. Twenty New Giant Planets

    Get PDF
    NASA's Transiting Exoplanet Survey Satellite (TESS) mission promises to improve our understanding of hot Jupiters by providing an all-sky, magnitude-limited sample of transiting hot Jupiters suitable for population studies. Assembling such a sample requires confirming hundreds of planet candidates with additional follow-up observations. Here, we present twenty hot Jupiters that were detected using TESS data and confirmed to be planets through photometric, spectroscopic, and imaging observations coordinated by the TESS Follow-up Observing Program (TFOP). These twenty planets have orbital periods shorter than 7 days and orbit relatively bright FGK stars (10.9<G<13.010.9 < G < 13.0). Most of the planets are comparable in mass to Jupiter, although there are four planets with masses less than that of Saturn. TOI-3976 b, the longest period planet in our sample (P=6.6P = 6.6 days), may be on a moderately eccentric orbit (e=0.18±0.06e = 0.18\pm0.06), while observations of the other targets are consistent with them being on circular orbits. We measured the projected stellar obliquity of TOI-1937A b, a hot Jupiter on a 22.4 hour orbit with the Rossiter-McLaughlin effect, finding the planet's orbit to be well-aligned with the stellar spin axis (λ=4.0±3.5|\lambda| = 4.0\pm3.5^\circ). We also investigated the possibility that TOI-1937 is a member of the NGC 2516 open cluster, but ultimately found the evidence for cluster membership to be ambiguous. These objects are part of a larger effort to build a complete sample of hot Jupiters to be used for future demographic and detailed characterization work.Comment: 67 pages, 11 tables, 13 figures, 2 figure sets. Resubmitted to ApJS after revision
    corecore