11 research outputs found

    Multi-LexSum: Real-World Summaries of Civil Rights Lawsuits at Multiple Granularities

    Full text link
    With the advent of large language models, methods for abstractive summarization have made great strides, creating potential for use in applications to aid knowledge workers processing unwieldy document collections. One such setting is the Civil Rights Litigation Clearinghouse (CRLC) (https://clearinghouse.net),which posts information about large-scale civil rights lawsuits, serving lawyers, scholars, and the general public. Today, summarization in the CRLC requires extensive training of lawyers and law students who spend hours per case understanding multiple relevant documents in order to produce high-quality summaries of key events and outcomes. Motivated by this ongoing real-world summarization effort, we introduce Multi-LexSum, a collection of 9,280 expert-authored summaries drawn from ongoing CRLC writing. Multi-LexSum presents a challenging multi-document summarization task given the length of the source documents, often exceeding two hundred pages per case. Furthermore, Multi-LexSum is distinct from other datasets in its multiple target summaries, each at a different granularity (ranging from one-sentence "extreme" summaries to multi-paragraph narrations of over five hundred words). We present extensive analysis demonstrating that despite the high-quality summaries in the training data (adhering to strict content and style guidelines), state-of-the-art summarization models perform poorly on this task. We release Multi-LexSum for further research in summarization methods as well as to facilitate development of applications to assist in the CRLC's mission at https://multilexsum.github.io.Comment: 37 pages, 2 figures, 9 table

    The Semantic Reader Project: Augmenting Scholarly Documents through AI-Powered Interactive Reading Interfaces

    Full text link
    Scholarly publications are key to the transfer of knowledge from scholars to others. However, research papers are information-dense, and as the volume of the scientific literature grows, the need for new technology to support the reading process grows. In contrast to the process of finding papers, which has been transformed by Internet technology, the experience of reading research papers has changed little in decades. The PDF format for sharing research papers is widely used due to its portability, but it has significant downsides including: static content, poor accessibility for low-vision readers, and difficulty reading on mobile devices. This paper explores the question "Can recent advances in AI and HCI power intelligent, interactive, and accessible reading interfaces -- even for legacy PDFs?" We describe the Semantic Reader Project, a collaborative effort across multiple institutions to explore automatic creation of dynamic reading interfaces for research papers. Through this project, we've developed ten research prototype interfaces and conducted usability studies with more than 300 participants and real-world users showing improved reading experiences for scholars. We've also released a production reading interface for research papers that will incorporate the best features as they mature. We structure this paper around challenges scholars and the public face when reading research papers -- Discovery, Efficiency, Comprehension, Synthesis, and Accessibility -- and present an overview of our progress and remaining open challenges

    Gas distributor for ultra-large air blow-out bromine extraction plant

    No full text
    The initial distribution of gas and liquid is one of the key factors that determine the operation efficiency of packed towers. The development of a gas distributor for ultra-large air blow-out bromine extraction plant can improve operation efficiency, save energy and reduce consumption. In order to develop the gas distributor for ultra-large air blow-out bromine extraction plant, the guidelines for evaluating gas distributors are clarified in this paper, and six kinds of commonly gas distributor are compared in detail. Considering gas distribution inhomogeneity, liquid foam entrainment rates and distributor pressure drop, the double tangential circulation type gas distributor is the first choice in the ultra-large air blow-out method bromine extraction plant

    Improving digital mapping of soil organic matter in cropland by incorporating crop rotation

    No full text
    Despite human activities are key influencing factors for cropland soil organic matter (SOM), detailed characterization of human activities has always been limited in the digital mapping of SOM due to the lack of proper representations of human’s cropland use activities. Crop rotation is an essential human agricultural practice significantly affecting the spatial–temporal variations of SOM due to the periodically dynamic changes of crops. Thus, incorporating crop rotation in the digital soil mapping holds high potential for improving SOM prediction. Here, we applied time-series radar Sentinel-1 and optical Sentinel-2 to map crop rotation systems by a hierarchical rule-based method. Then we explored the effectiveness of incorporating such information in predicting SOM by implementing various combinations of predictive variables. We chose a typical multiple cropping region with various crop rotations in southern China. The model performance was evaluated by 10-fold cross-validation. Results showed significant differences in SOM among the crop rotation systems, and the single rice rotated with vegetables has the highest SOM followed by the high-diversity vegetables and long-term orchard systems. Adding crop rotation enhanced the predictability of SOM with a decrease in RMSE by 7% and an increase in R2 by 24%. Furthermore, the crop rotation systems appeared more important in the predictive models than the soil, topographic, and climatic variables. Our results demonstrated the effectiveness of including crop rotation in predicting SOM over complex agricultural landscapes. Our study indicated that human activities should be characterized more detailedly in cropland soil mapping, and that crop rotation containing information on the seasonal dynamics of cropland may be an option for such characterization
    corecore