14 research outputs found

    Fluorescence-Tracking of Activation Gating in Human ERG Channels Reveals Rapid S4 Movement and Slow Pore Opening

    Get PDF
    Background: hERG channels are physiologically important ion channels which mediate cardiac repolarization as a result of their unusual gating properties. These are very slow activation compared with other mammalian voltage-gated potassium channels, and extremely rapid inactivation. The mechanism of slow activation is not well understood and is investigated here using fluorescence as a direct measure of S4 movement and pore opening. Methods and Findings: Tetramethylrhodamine-5-maleimide (TMRM) fluorescence at E519 has been used to track S4 voltage sensor movement, and channel opening and closing in hERG channels. Endogenous cysteines (C445 and C449) in the S1–S2 linker bound TMRM, which caused a 10 mV hyperpolarization of the VK of activation to 227.562.0 mV, and showed voltage-dependent fluorescence signals. Substitution of S1–S2 linker cysteines with valines allowed unobstructed recording of S3–S4 linker E519C and L520C emission signals. Depolarization of E519C channels caused rapid initial fluorescence quenching, fit with a double Boltzmann relationship, F-VON, with VK,1 = 237.861.7 mV, and VK,2 = 43.567.9 mV. The first phase, VK,1, was,20 mV negative to the conductance-voltage relationship measured from ionic tail currents (G-VK = 218.361.2 mV), and relatively unchanged in a non-inactivating E519C:S620T mutant (V K = 234.461.5 mV), suggesting the fast initial fluorescence quenching tracked S4 voltage sensor movement. The second phase of rapid quenching was absent in the S620T mutant. The E519C fluorescence upon repolarizatio

    hERG S4-S5 linker acts as a voltage-dependent ligand that binds to the activation gate and locks it in a closed state

    No full text
    International audienceDelayed-rectifier potassium channels (hERG and KCNQ1) play a major role in cardiac repolarization. These channels are formed by a tetrameric pore (S5-S6) surrounded by four voltage sensor domains (S1-S4). Coupling between voltage sensor domains and the pore activation gate is critical for channel voltage-dependence. However, molecular mechanisms remain elusive. Herein, we demonstrate that covalently binding, through a disulfide bridge, a peptide mimicking the S4-S5 linker (S4-S5L) to the channel S6 C-terminus (S6T) completely inhibits hERG. This shows that channel S4-S5L is sufficient to stabilize the pore activation gate in its closed state. Conversely, covalently binding a peptide mimicking S6T to the channel S4-S5L prevents its inhibiting effect and renders the channel almost completely voltage-independent. This shows that the channel S4-S5L is necessary to stabilize the activation gate in its closed state. Altogether, our results provide chemical evidence that S4-S5L acts as a voltage-controlled ligand that binds S6T to lock the channel in a closed state, elucidating the coupling between voltage sensors and the gate in delayed rectifier potassium channels and potentially other voltage-gated channels

    Opposite effects of the S4-S5 linker and PIP2 on voltage-gated channel function: KCNQ1/KCNE1 and other channels

    No full text
    Voltage-gated potassium (Kv) channels are tetramers, each subunit presenting six transmembrane segments (S1-S6), with each S1-S4 segments forming a voltage-sensing domain (VSD) and the four S5-S6 forming both the conduction pathway and its gate. S4 segments control the opening of the intracellular activation gate in response to changes in membrane potential. Crystal structures of several voltage-gated ion channels in combination with biophysical and mutagenesis studies highlighted the critical role of the S4-S5 linker (S4S5L) and of the S6 C-terminal part (S6T) in the coupling between the VSD and the activation gate. Several mechanisms have been proposed to describe the coupling at a molecular scale. This review summarizes the mechanisms suggested for various voltage-gated ion channels, including a mechanism that we described for KCNQ1, in which S4S5L is acting like a ligand binding to S6T to stabilize the channel in a closed state. As discussed in this review, this mechanism may explain the reverse response to depolarization in HCN-like channels. As opposed to S4S5L, the phosphoinositide, phosphatidylinositol 4,5-bisphosphate (PIP2), stabilizes KCNQ1 channel in an open state. Many other ion channels (not only voltage-gated) require PIP2 to function properly, confirming its crucial importance as an ion channel co-factor. This is highlighted in cases in which an altered regulation of ion channels by PIP2 leads to channelopathies, as observed for KCNQ1. This review summarizes the state of the art on the two regulatory mechanisms that are critical for KCNQ1 and other voltage-gated channels function (PIP2 and S4-S5L), and assesses their potential physiological and pathophysiological roles

    Dual effect of phosphatidyl (4,5)-bisphosphate PIP2 on shaker K+ channels

    No full text
    Phosphatidylinositol (4,5)-bisphosphate (PIP2) is a phospholipid of the plasma membrane that has been shown to be a key regulator of several ion channels. Functional studies and more recently structural studies of Kir channels have revealed the major impact of PIP2 on the open state stabilization. A similar effect of PIP2 on the delayed rectifiers Kv7.1 and Kv11.1, two voltage-gated K+ channels, has been suggested, but the molecular mechanism remains elusive and nothing is known on PIP2 effect on other Kv such as those of the Shaker family. By combining giant-patch ionic and gating current recordings in COS-7 cells, and voltage-clamp fluorimetry in Xenopus oocytes, both heterologously expressing the voltage-dependent Shaker channel, we show that PIP2 exerts 1) a gain-of-function effect on the maximal current amplitude, consistent with a stabilization of the open state and 2) a loss-of-function effect by positive-shifting the activation voltage dependence, most likely through a direct effect on the voltage sensor movement, as illustrated by molecular dynamics simulations

    Toward Personalized Medicine: Using Cardiomyocytes Differentiated From Urine-Derived Pluripotent Stem Cells to Recapitulate Electrophysiological Characteristics of Type 2 Long QT Syndrome

    Get PDF
    International audienceBackground-—Human genetically inherited cardiac diseases have been studied mainly in heterologous systems or animal models, independent of patients' genetic backgrounds. Because sources of human cardiomyocytes (CMs) are extremely limited, the use of urine samples to generate induced pluripotent stem cell–derived CMs would be a noninvasive method to identify cardiac dysfunctions that lead to pathologies within patients' specific genetic backgrounds. The objective was to validate the use of CMs differentiated from urine-derived human induced pluripotent stem (UhiPS) cells as a new cellular model for studying patients' specific arrhythmia mechanisms. Methods and Results-—Cells obtained from urine samples of a patient with long QT syndrome who harbored the HERG A561P gene mutation and his asymptomatic noncarrier mother were reprogrammed using the episomal-based method. UhiPS cells were then differentiated into CMs using the matrix sandwich method. UhiPS-CMs showed proper expression of atrial and ventricular myofilament proteins and ion channels. They were electrically functional, with nodal-, atrial-and ventricular-like action potentials recorded using high-throughput optical and patch-clamp techniques. Comparison of HERG expression from the patient's UhiPS-CMs to the mother's UhiPS-CMs showed that the mutation led to a trafficking defect that resulted in reduced delayed rectifier

    HIV-Tat induces a decrease in I Kr and I Ks via reduction in phosphatidylinositol-(4,5)-bisphosphate availability

    Get PDF
    International audiencePatients with HIV present with a higher prevalence of QT prolongation, of which molecularbases are still not clear. Among HIV proteins, Tat serves as a transactivator that stimulatesviral genes expression and is required for efficient HIV replication. Tat is actively secretedinto the blood by infected T-cells and affects organs such as the heart. Tat has been shown toalter cardiac repolarization in animal models but how this is mediated and whether this is alsothe case in human cells is unknown. In the present study, we show that Tat transfection inheterologous expression systems led to a decrease in hERG (underlying cardiac IKr) andhuman KCNE1-KCNQ1 (underlying cardiac IKs) currents and to an acceleration of theirdeactivation. This is consistent with a decrease in available phosphatidylinositol-(4,5)-bisphosphate (PIP2). A mutant Tat, unable to bind PIP2, did not reproduce the observedeffects. In addition, WT-Tat had no effect on a mutant KCNQ1 which is PIP2-insensitive,further confirming the hypothesis. Twenty four-hour incubation of human induced pluripotentstem cells-derived cardiomyocytes with Wild-type Tat reduced IKr and accelerated itsdeactivation. Concordantly, this Tat incubation led to a prolongation of the action potential(AP) duration. Events of AP alternans were also recorded in the presence of Tat, and wereexacerbated at a low pacing cycle length. Altogether, these data obtained on human K+channels both in heterologous expression systems and in human cardiomyocytes stronglysuggest that Tat sequesters PIP2, leading to a reduction of IKr and IKs, and provide a molecularmechanism for QT prolongation in HIV-infected patients.Ke
    corecore