1,416 research outputs found
A Complexity Measure for Continuous Time Quantum Algorithms
We consider unitary dynamical evolutions on n qubits caused by time dependent
pair-interaction Hamiltonians and show that the running time of a parallelized
two-qubit gate network simulating the evolution is given by the time integral
over the chromatic index of the interaction graph. This defines a complexity
measure of continuous and discrete quantum algorithms which are in exact
one-to-one correspondence. Furthermore we prove a lower bound on the growth of
large-scale entanglement depending on the chromatic index.Comment: 6 pages, Revte
Entwicklung eines Inkubationssystems für ein inverses Mikroskop zur Langzeitbeobachtung von Zellkulturen in gekammerten Objektträgern
Trifunctional bispecific antibodies open up new immunological possibilities in tumour treatment. Prior to clinical application, comprehensive investigations using animal models and in vitro examinations need to be done. To investigate long-term interactions between Various immunologically active blood cells and individual tumour cells in the presence of antibodies, we developed an incubation system for experimental cell cultures on an inverted microscope. The system consists of a perspex box with a central moisture chamber with integrated water reservoir, external air circulation heating, and a CO2 supply. The sterile cell cultures are located in the wells of a slide positioned within a depression in the water reservoir. The newly developed incubation system enables continuous observation over the long term of experiments under optimal cell cultures conditions in combination with modern video techniques
Design study of Software-Implemented Fault-Tolerance (SIFT) computer
Software-implemented fault tolerant (SIFT) computer design for commercial aviation is reported. A SIFT design concept is addressed. Alternate strategies for physical implementation are considered. Hardware and software design correctness is addressed. System modeling and effectiveness evaluation are considered from a fault-tolerant point of view
A Peer-to-Peer Approach to Content-Based Publish/Subscribe
Publish/subscribe systems are successfully used to decouple distributed applications. However, their e#ciency is closely tied to the topology of the underlying network, the design of which has been neglected. Peer-to-peer network topologies can o#er inherently bounded delivery depth, load sharing, and self-organisation. In this paper, we present a contentbased publish/subscribe system routed over a peer-to-peer topology graph. The implications of combining these approaches are explored and a particular implementation using elements from Rebeca and Chord is proven correct
Adaptive FE-BE Coupling for Strongly Nonlinear Transmission Problems with Coulomb Friction
We analyze an adaptive finite element/boundary element procedure for scalar
elastoplastic interface problems involving friction, where a nonlinear
uniformly monotone operator such as the p-Laplacian is coupled to the linear
Laplace equation on the exterior domain. The problem is reduced to a
boundary/domain variational inequality, a discretized saddle point formulation
of which is then solved using the Uzawa algorithm and adaptive mesh refinements
based on a gradient recovery scheme. The Galerkin approximations are shown to
converge to the unique solution of the variational problem in a suitable
product of L^p- and L^2-Sobolev spaces.Comment: 27 pages, 3 figure
Optimal Constraint Projection for Hyperbolic Evolution Systems
Techniques are developed for projecting the solutions of symmetric hyperbolic
evolution systems onto the constraint submanifold (the constraint-satisfying
subset of the dynamical field space). These optimal projections map a field
configuration to the ``nearest'' configuration in the constraint submanifold,
where distances between configurations are measured with the natural metric on
the space of dynamical fields. The construction and use of these projections is
illustrated for a new representation of the scalar field equation that exhibits
both bulk and boundary generated constraint violations. Numerical simulations
on a black-hole background show that bulk constraint violations cannot be
controlled by constraint-preserving boundary conditions alone, but are
effectively controlled by constraint projection. Simulations also show that
constraint violations entering through boundaries cannot be controlled by
constraint projection alone, but are controlled by constraint-preserving
boundary conditions. Numerical solutions to the pathological scalar field
system are shown to converge to solutions of a standard representation of the
scalar field equation when constraint projection and constraint-preserving
boundary conditions are used together.Comment: final version with minor changes; 16 pages, 14 figure
A theory of intense-field dynamic alignment and high harmonic generation from coherently rotating molecules and interpretation of intense-field ultrafast pump-probe experiments
A theory of ultra-fast pump-probe experiments proposed by us earlier [F.H.M.
Faisal et al., Phys. Rev. Lett. 98, 143001 (2007) and F.H.M. Faisal and A.
Abdurrouf, Phys. Rev. Lett. 100, 123005 (2008)] is developed here fully and
applied to investigate the phenomena of dynamic alignment and high harmonic
generation (HHG) from coherently rotating linear molecules. The theory provides
essentially analytical results for the signals that allow us to investigate the
simultaneous dependence of the HHG signals on the two externally available
control parameters, namely, the relative angle between the polarizations, and
the delay-time between the two pulses. It is applied to investigate the
characteristics of high harmonic emission from nitrogen and oxygen molecules
that have been observed experimentally in a number of laboratories. The results
obtained both in the time-domain and in the frequency-domain are compared with
the observed characteristics as well as directly with the data and are found to
agree remarkably well. In addition we have predicted the existence of a "magic"
polarization angle at which all modulations of the harmonic emission from
nitrogen molecule changes to a steady emission at the harmonic frequency. Among
other things we have also shown a correlation between the existence of the
"magic" or critical polarization angles and the symmetry of the active
molecular orbitals, that is deemed to be useful in connection with the "inverse
problem" of molecular imaging from the HHG data.Comment: 31 pages, 22 figures, and 140 equation
Neutron diffraction as a probe of liquid and glass structures under extreme conditions
Neutrons provide a unique tool for probing the structure of liquid and glassy materials, and deliver information that cannot be obtained from other experimental techniques. Advances in neutron diffraction instrumentation and measurement protocols now make it possible to measure the structure of these disordered materials under extremes of high temperatures or high pressures. Here, we consider the use of aerodynamic levitation with laser heating to explore the structure of glass-forming oxide melts at high temperatures, and the use of a Paris Edinburgh press to investigate the mechanisms of density-driven network collapse for glassy materials in the gigapascal (GPa) pressure regime
The structure of fluid trifluoromethane and methylfluoride
We present hard X-ray and neutron diffraction measurements on the polar
fluorocarbons HCF3 and H3CF under supercritical conditions and for a range of
molecular densities spanning about a factor of ten. The Levesque-Weiss-Reatto
inversion scheme has been used to deduce the site-site potentials underlying
the measured partial pair distribution functions. The orientational
correlations between adjacent fluorocarbon molecules -- which are characterized
by quite large dipole moments but no tendency to form hydrogen bonds -- are
small compared to a highly polar system like fluid hydrogen chloride. In fact,
the orientational correlations in HCF3 and H3CF are found to be nearly as small
as those of fluid CF4, a fluorocarbon with no dipole moment.Comment: 11 pages, 9 figure
- …