30 research outputs found

    Mechanisms of action of hESC-secreted proteins that enhance human and mouse myogenesis.

    Get PDF
    Adult stem cells grow poorly in vitro compared to embryonic stem cells, and in vivo stem cell maintenance and proliferation by tissue niches progressively deteriorates with age. We previously reported that factors produced by human embryonic stem cells (hESCs) support a robust regenerative capacity for adult and old mouse muscle stem/progenitor cells. Here we extend these findings to human muscle progenitors and investigate underlying molecular mechanisms. Our results demonstrate that hESC-conditioned medium enhanced the proliferation of mouse and human muscle progenitors. Furthermore, hESC-produced factors activated MAPK and Notch signaling in human myogenic progenitors, and Delta/Notch-1 activation was dependent on MAPK/pERK. The Wnt, TGF-β and BMP/pSmad1,5,8 pathways were unresponsive to hESC-produced factors, but BMP signaling was dependent on intact MAPK/pERK. c-Myc, p57, and p18 were key effectors of the enhanced myogenesis promoted by the hECS factors. To define some of the active ingredients of the hESC-secretome which may have therapeutic potential, a comparative proteomic antibody array analysis was performed and identified several putative proteins, including FGF2, 6 and 19 which as ligands for MAPK signaling, were investigated in more detail. These studies emphasize that a youthful signaling of multiple signaling pathways is responsible for the pro-regenerative activity of the hESC factors

    hESC-secreted proteins can be enriched for multiple regenerative therapies by heparin-binding.

    Get PDF
    This work builds upon our findings that proteins secreted by hESCs exhibit pro-regenerative activity, and determines that hESC-conditioned medium robustly enhances the proliferation of both muscle and neural progenitor cells. Importantly, this work establishes that it is the proteins that bind heparin which are responsible for the pro-myogenic effects of hESC-conditioned medium, and indicates that this strategy is suitable for enriching the potentially therapeutic factors. Additionally, this work shows that hESC-secreted proteins act independently of the mitogen FGF-2, and suggests that FGF-2 is unlikely to be a pro-aging molecule in the physiological decline of old muscle repair. Moreover, hESC-secreted factors improve the viability of human cortical neurons in an Alzheimers disease (AD) model, suggesting that these factors can enhance the maintenance and regeneration of multiple tissues in the aging body

    Feasibility of preoperative chemotherapy for locally advanced, operable colon cancer: The pilot phase of a randomised controlled trial

    Get PDF
    Summary: Background Preoperative (neoadjuvant) chemotherapy and radiotherapy are more eff ective than similar postoperative treatment for oesophageal, gastric, and rectal cancers, perhaps because of more eff ective micrometastasis eradication and reduced risk of incomplete excision and tumour cell shedding during surgery. The FOxTROT trial aims to investigate the feasibility, safety, and effi cacy of preoperative chemotherapy for colon cancer. Methods In the pilot stage of this randomised controlled trial, 150 patients with radiologically staged locally advanced (T3 with ≥5 mm invasion beyond the muscularis propria or T4) tumours from 35 UK centres were randomly assigned (2:1) to preoperative (three cycles of OxMdG [oxaliplatin 85 mg/m², l-folinic acid 175 mg, fl uorouracil 400 mg/m² bolus, then 2400 mg/m² by 46 h infusion] repeated at 2-weekly intervals followed by surgery and a further nine cycles of OxMdG) or standard postoperative chemotherapy (12 cycles of OxMdG). Patients with KRAS wild-type tumours were randomly assigned (1:1) to receive panitumumab (6 mg/kg; every 2 weeks with the fi rst 6 weeks of chemotherapy) or not. Treatment allocation was through a central randomisation service using a minimised randomisation procedure including age, radiological T and N stage, site of tumour, and presence of defunctioning colostomy as stratifi cation variables. Primary outcome measures of the pilot phase were feasibility, safety, and tolerance of preoperative therapy, and accuracy of radiological staging. Analysis was by intention to treat. This trial is registered, number ISRCTN 87163246. Findings 96% (95 of 99) of patients started and 89% (85 of 95) completed preoperative chemotherapy with grade 3–4 gastrointestinal toxicity in 7% (seven of 94) of patients. All 99 tumours in the preoperative group were resected, with no signifi cant diff erences in postoperative morbidity between the preoperative and control groups: 14% (14 of 99) versus 12% (six of 51) had complications prolonging hospital stay (p=0·81). 98% (50 of 51) of postoperative chemotherapy patients had T3 or more advanced tumours confi rmed at post-resection pathology compared with 91% (90 of 99) of patients following preoperative chemotherapy (p=0·10). Preoperative therapy resulted in signifi cant downstaging of TNM5 compared with the postoperative group (p=0·04), including two pathological complete responses, apical node involvement (1% [one of 98] vs 20% [ten of 50], p<0·0001), resection margin involvement (4% [ four of 99] vs 20% [ten of 50], p=0·002), and blinded centrally scored tumour regression grading: 31% (29 of 94) vs 2% (one of 46) moderate or greater regression (p=0·0001). Interpretation Preoperative chemotherapy for radiologically staged, locally advanced operable primary colon cancer is feasible with acceptable toxicity and perioperative morbidity. Proceeding to the phase 3 trial, to establish whether the encouraging pathological responses seen with preoperative therapy translates into improved long-term oncological outcome, is appropriate

    On shaky ground: the making of risk in Bogotá

    Get PDF
    How does risk become a technique for governing the future of cities and urban life? Using genealogical and ethnographic methods, this paper tracks the emergence of risk management in Bogotá, Colombia, from its initial institutionalization to its ongoing implementation in governmental practice. Its specific focus is the invention of the ‘zone of high risk’ in Bogotá and the everyday work performed by the officials responsible for determining the likelihood of landslide in these areas. It addresses the ongoing formation of techniques of urban planning and governance and the active relationship between urban populations and environments and emerging forms of political authority and technical expertise. Ultimately, it reveals that techniques of risk management are made and remade as experts and nonexperts grapple with the imperative to bring heterogeneous assemblages of people and things into an unfolding technopolitical domain

    Acidic pH-Targeted Chitosan-Capped Mesoporous Silica Coated Gold Nanorods Facilitate Detection of Pancreatic Tumors via Multispectral Optoacoustic Tomography

    No full text
    We present a cancer nanomedicine based on acidic pH targeted gold nanorods designed for multispectral optoacoustic tomography (MSOT). We have designed gold nanorods coated with mesoporous silica and subsequently capped with chitosan (CMGs). We have conjugated pH-sensitive variant 7 pHLIP peptide to the CMGs (V7-CMG) to provide targeting specificity to the acidic tumor microenvironment. In vitro, treatment of S2VP10 and MiaPaca2 cells with V7-CMG containing gemcitabine resulted in significantly greater cytotoxicity with 97% and 96.5% cell death, respectively than gemcitabine alone 60% and 76% death at pH 6.5 (S2VP10 pH 6.5 p = 0.009; MiaPaca2 pH 6.5 p = 0.0197). In vivo, the V7-CMGs provided the contrast and targeting specificity necessary for MSOT of retroperitoneal orthotopic pancreatic tumors. In the in vivo S2VP10 model, the V7-CMG particle preferentially accumulated within the tumor at 17.1 MSOT a.u. signal compared with 0.7 MSOT a.u. in untargeted CMG control in tumor (<i>P</i> = 0.0002). Similarly, V7-CMG signal was 9.34 MSOT a.u. in the S2013 model compared with untargeted CMG signal at 0.15 MSOT a.u. (<i>P</i> = 0.0004). The pH-sensitivity of the targeting pHLIP peptide and chitosan coating makes the particles suitable for simultaneous in vivo tumor imaging and drug delivery
    corecore