5 research outputs found

    Effects of trigonelline, diosgenin, and <i>Cistanche deserticola</i> polysaccharide on the culture of female germline stem cells <i>in vitro</i>

    No full text
    Female germline stem cells (FGSCs) are renewable sources of oocytes that play an indispensable role in re-establishing mammal fertility. Here, we have established FGSCs from neonatal mice, which exhibit characteristics of germline stem cells. We show that compared with monomeric trigonelline and diosgenin, macromolecular compounds Cistanche deserticola polysaccharides (CDPs) in Chinese herbal medicine can enhance the ability of FGSCs to differentiate into oocytes at appropriate concentrations while maintaining self-renewal in vitro. In contrast, trigonelline and diosgenin inhibited the expression of germ cell-specific genes while reducing cell proliferation activity. In summary, CDPs could induce the differentiation and self-renewal of FGSCs in vitro. The comparison of the effects of the active components of different types of Chinese medicine will provide a reference for the development of clinical drugs in the future, and help to elucidate the development process of FGSCs.</p

    An Atomically Layered InSe Avalanche Photodetector

    No full text
    Atomically thin photodetectors based on 2D materials have attracted great interest due to their potential as highly energy-efficient integrated devices. However, photoinduced carrier generation in these media is relatively poor due to low optical absorption, limiting device performance. Current methods for overcoming this problem, such as reducing contact resistances or back gating, tend to increase dark current and suffer slow response times. Here, we realize the avalanche effect in a 2D material-based photodetector and show that avalanche multiplication can greatly enhance the device response of an ultrathin InSe-based photodetector. This is achieved by exploiting the large Schottky barrier formed between InSe and Al electrodes, enabling the application of a large bias voltage. Plasmonic enhancement of the photosensitivity, achieved by patterning arrays of Al nanodisks onto the InSe layer, further improves device efficiency. With an external quantum efficiency approaching 866%, a dark current in the picoamp range, and a fast response time of 87 μs, this atomic layer device exhibits multiple significant advances in overall performance for this class of devices

    Tailoring the Physical Properties of Molybdenum Disulfide Monolayers by Control of Interfacial Chemistry

    No full text
    We demonstrate how substrate interfacial chemistry can be utilized to tailor the physical properties of single-crystalline molybdenum disulfide (MoS<sub>2</sub>) atomic-layers. Semiconducting, two-dimensional MoS<sub>2</sub> possesses unique properties that are promising for future optical and electrical applications for which the ability to tune its physical properties is essential. We use self-assembled monolayers with a variety of end termination chemistries to functionalize substrates and systematically study their influence on the physical properties of MoS<sub>2</sub>. Using electrical transport measurements, temperature-dependent photoluminescence spectroscopy, and empirical and first-principles calculations, we explore the possible mechanisms involved. Our data shows that combined interface-related effects of charge transfer, built-in molecular polarities, varied densities of defects, and remote interfacial phonons strongly modify the electrical and optical properties of MoS<sub>2</sub>. These findings can be used to effectively enhance or modulate the conductivity, field-effect mobility, and photoluminescence in MoS<sub>2</sub> monolayers, illustrating an approach for local and universal property modulations in two-dimensional atomic-layers

    A Study of Vertical Transport through Graphene toward Control of Quantum Tunneling

    No full text
    Vertical integration of van der Waals (vdW) materials with atomic precision is an intriguing possibility brought forward by these two-dimensional (2D) materials. Essential to the design and analysis of these structures is a fundamental understanding of the vertical transport of charge carriers into and across vdW materials, yet little has been done in this area. In this report, we explore the important roles of single layer graphene in the vertical tunneling process as a tunneling barrier. Although a semimetal in the lateral lattice plane, graphene together with the vdW gap act as a tunneling barrier that is nearly transparent to the vertically tunneling electrons due to its atomic thickness and the transverse momenta mismatch between the injected electrons and the graphene band structure. This is accentuated using electron tunneling spectroscopy (ETS) showing a lack of features corresponding to the Dirac cone band structure. Meanwhile, the graphene acts as a lateral conductor through which the potential and charge distribution across the tunneling barrier can be tuned. These unique properties make graphene an excellent 2D atomic grid, transparent to charge carriers, and yet can control the carrier flux via the electrical potential. A new model on the quantum capacitance’s effect on vertical tunneling is developed to further elucidate the role of graphene in modulating the tunneling process. This work may serve as a general guideline for the design and analysis of vdW vertical tunneling devices and heterostructures, as well as the study of electron/spin injection through and into vdW materials

    Strain-Induced Electronic Structure Changes in Stacked van der Waals Heterostructures

    No full text
    Vertically stacked van der Waals heterostructures composed of compositionally different two-dimensional atomic layers give rise to interesting properties due to substantial interactions between the layers. However, these interactions can be easily obscured by the twisting of atomic layers or cross-contamination introduced by transfer processes, rendering their experimental demonstration challenging. Here, we explore the electronic structure and its strain dependence of stacked MoSe<sub>2</sub>/WSe<sub>2</sub> heterostructures directly synthesized by chemical vapor deposition, which unambiguously reveal strong electronic coupling between the atomic layers. The direct and indirect band gaps (1.48 and 1.28 eV) of the heterostructures are measured to be lower than the band gaps of individual MoSe<sub>2</sub> (1.50 eV) and WSe<sub>2</sub> (1.60 eV) layers. Photoluminescence measurements further show that both the direct and indirect band gaps undergo redshifts with applied tensile strain to the heterostructures, with the change of the indirect gap being particularly more sensitive to strain. This demonstration of strain engineering in van der Waals heterostructures opens a new route toward fabricating flexible electronics
    corecore