91 research outputs found

    Isotopic and Microstructural Analyses of Opaque Mineral Assemblages and Their Alteration Products Hosted in a Refractory Inclusion

    Get PDF
    Calcium-aluminum-rich inclusions (CAIs) hosted in primitive meteorites are the oldest solids formed in the Solar System. Some CAIs contain metal nuggets that are complex assemblages of Fe-Ni alloys, along with rare ultra-refractory metals such as platinum group elements (PGEs), and their alteration products such as magnetite, sulfides, and phosphates. Three possible mechanisms proposed to explain the origin of these metal nuggets include condensation in circumstellar settings, condensation in the solar nebula within the CAI-forming region, or crystallization from immiscible metal-silicate melt. However, secondary alteration processes may have also affected some of these assemblages. Additionally, similar metal assemblages observed in chondrules and chondritic matrix indicate that all of these metal nuggets could share common high-temperature origins. These metal assemblages record early Solar System conditions that are reflected in their distinctive chemical composition, mineralogy and microstructures. Here we report a detailed mineralogical, microstructural and oxygen isotopic study of one such metal assemblage hosted in a CAI to understand the physical and chemical settings in which it formed

    Determination of Interface Atomic Structure and Its Impact on Spin Transport Using Z-Contrast Microscopy and Density-Functional Theory

    Full text link
    We combine Z-contrast scanning transmission electron microscopy with density-functional-theory calculations to determine the atomic structure of the Fe/AlGaAs interface in spin-polarized light-emitting diodes. A 44% increase in spin-injection efficiency occurs after a low-temperature anneal, which produces an ordered, coherent interface consisting of a single atomic plane of alternating Fe and As atoms. First-principles transport calculations indicate that the increase in spin-injection efficiency is due to the abruptness and coherency of the annealed interface.Comment: 16 pages (including cover), 4 figure

    FIB-TEM Investigations of Fe-NI-Sulfides in the CI Chondrites Alais and Orgueil

    Get PDF
    The CI chondrites are primitive meteorites with bulk compositions matching the solar photosphere for all but the lightest elements. They have been extensively aqueously altered, and are composed primarily of fine-grained phyllosilicate matrix material which is host to carbonates, sulfates, sulfides, and minor amounts of olivine and pyroxene. The alteration, while extensive, is heterogeneous. For example, CI-chondrite cubanite and carbonate grains differ on mm to sub-mm scales, demonstrating multiple aqueous episodes. CI-chondrite variability is also evidenced by degree of brecciation, abundance and size of coarse-grained phyllosilicates, olivine and pyroxene abundance, as well as Ni-content and size of sulfide grains. Our previous work revealed Orgueil sulfide grains with variable Ni-contents, metal:S ratios, crystal structures and textures. We continue to explore the variability of CI-chondrite pyrrhotite (Po, (FeNi)1-xS) and pentlandite (Pn, (Fe,Ni)9S8) grains. We investigate the microstructure of sulfides within and among CI-chondrite meteorites in order to place constraints on the conditions under which they formed

    Nanoscale Analysis of Space-Weathering Features in Soils from Itokawa

    Get PDF
    Space weathering alters the spectral properties of airless body surface materials by redden-ing and darkening their spectra and attenuating characteristic absorption bands, making it challenging to characterize them remotely [1,2]. It also causes a discrepency between laboratory analysis of meteorites and remotely sensed spectra from asteroids, making it difficult to associate meteorites with their parent bodies. The mechanisms driving space weathering include mi-crometeorite impacts and the interaction of surface materials with solar energetic ions, particularly the solar wind. These processes continuously alter the microchemical and structural characteristics of exposed grains on airless bodies. The change of these properties is caused predominantly by the vapor deposition of reduced Fe and FeS nanoparticles (npFe(sup 0) and npFeS respectively) onto the rims of surface grains [3]. Sample-based analysis of space weathering has tra-ditionally been limited to lunar soils and select asteroidal and lunar regolith breccias [3-5]. With the return of samples from the Hayabusa mission to asteroid Itoka-wa [6], for the first time we are able to compare space-weathering features on returned surface soils from a known asteroidal body. Analysis of these samples will contribute to a more comprehensive model for how space weathering varies across the inner solar system. Here we report detailed microchemical and microstructal analysis of surface grains from Itokawa

    Coordinated Microanalysis of Phosphates in High-Titanium Lunar Basalts

    Get PDF
    Laboratory studies of lunar apatite [Ca5(PO4)3(F,Cl,OH)] have been important for determining the volatile inventory of the interior and the roles volatiles played during the magmatic evolution of the Moon. It has been suggested that high-Ti mare basalts sample volatiles from a distinct reservoir in the lunar mantle. However, there is still debate surrounding the crystallization and post-crystallization history of apatite in those basalts. This information is required before we can use apatite to characterize the abundance or isotopic composition of volatiles in melts or magmatic source regions. Our goal is to investigate the mineral chemistry, crystal structure, and volatile inventory of phosphates in high-Ti basalts from Apollo 11, which will allow us to determine the crystallization history of apatite in these rocks and identify any potential secondary processes that have changed the volatile composition that apatite acquired from the melt

    Simulating Space Weathering in the Transmission Electron Microscope via Dynamic in Situ Heating and Helium Irradiation of Olivine

    Get PDF
    The chemical composition, microstructure, and optical properties of grains on the surfaces of airless bodies are predominantly altered by micrometeorite impacts and solar wind irradiation. These processes drive space weathering and result in the formation of features including chemically-altered, amorphous grain rims, Fe nanoparticles (npFe), and vesiculated grain textures. These characteristics have been identified in returned samples from the surfaces of the Moon and asteroid Itokawa. In order to advance our understanding of the formation of these microstructural and chemical features in returned samples, we have simulated space weathering processes for a variety of materials via laboratory experiments. These experiments include ion irradiation to simulate solar wind exposure and laser irradiation and in situ heating to simulate micrometeorite impacts. While these experiments have provided considerable insight into the formation mechanisms of many space weathering features, they are predominantly static and typically performed separately. Here we present results from the simulated space weathering of olivine grains via He irradiation and dynamic heating, both performed in situ inside the transmission electron microscope (TEM). These experiments allow for the real-time observation of chemical and microstructural changes resulting from the superposed effects of ion irradiation and pulsed heating
    • …
    corecore