55 research outputs found
Reply to âComment on: âFlexural Strength by Fractography in Modern Brittle Materialsââ
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/108044/1/jace13133.pd
The systematicity challenge to anti-representational dynamicism
After more than twenty years of representational debate in the cognitive sciences, anti-representational dynamicism may be seen as offering a rival and radically new kind of explanation of systematicity phenomena. In this paper, I argue that, on the contrary, anti-representational dynamicism must face a version of the old systematicity challenge: either it does not explain systematicity, or else, it is just an implementation of representational theories. To show this, I present a purely behavioral and representation-free account of systematicity. I then consider a case of insect sensorimotor systematic behavior: communicating behavior in honey bees. I conclude that anti-representational dynamicism fails to capture the fundamental trait of systematic behaviors qua systematic, i.e., their involving exercises of the same behavioral capacities. I suggest, finally, a collaborative strategy in pursuit of a rich and powerful account of this central phenomenon of high cognition at all levels of explanation, including the representational level
Entrainment and motor emulation approaches to joint action: alternatives or complementary approaches?
Joint actions, such as music and dance, rely crucially on the ability of two, or more, agents to align their actions with great temporal precision. Within the literature that seeks to explain how this action alignment is possible, two broad approaches have appeared. The first, what we term the entrainment approach, has sought to explain these alignment phenomena in terms of the behavioral dynamics of the system of two agents. The second, what we term the emulator approach, has sought to explain these alignment phenomena in terms of mechanisms, such as forward and inverse models, that are implemented in the brain. They have often been pitched as alternative explanations of the same phenomena; however, we argue that this view is mistaken, because, as we show, these two approaches are engaged in distinct, and not mutually exclusive, explanatory tasks. While the entrainment approach seeks to uncover the general laws that govern behavior the emulator approach seeks to uncover mechanisms. We argue that is possible to do both and that the entrainment approach must pay greater attention to the mechanisms that support the behavioral dynamics of interest. In short, the entrainment approach must be transformed into a neuroentrainment approach by adopting a mechanistic view of explanation and by seeking mechanisms that are implemented in the brain
Quantitative Characterization of Mechanical Stress Field and Fracture Strength in Isotropic Brittle Materials During Crack Tip Propagation
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/109828/1/jace13230.pd
Ultrasonic Transducers for In-Service Inspection and Continuous Monitoring in High-Temperature Environments
The inspection of structures operating at high temperatures is a major challenge in a variety of industries, including the energy and petrochemical industries. Operators are typically performing nondestructive evaluations using ultrasound to monitor component thicknesses during scheduled shutdowns, thereby ensuring safe operation of their plants. However, despite being costly, this calendar-based approach may lead to undetected corrosion, which can potentially result in catastrophic failures. There is therefore a need for ultrasonic transducers designed to withstand permanent exposure to high temperatures, so as to continuously monitor the remnant thicknesses of structures in real time. This paper discusses the design of a heat-resistant ultrasonic transducer based on a piezoelectric element. The piezoelectric material, the electrodes, the backing layer, the wires and the casing are presented in detail from the acoustic and thermal expansion point of view. Four transducers optimized for 3 MHz were manufactured and tested to destruction in different conditions: (1) 72-h temperature steps from room temperature to 750 âC, (2) thermal cycles from room temperature to 500 âC and (3) 60 days of continuous operation at >550 âC. The paper discusses the results, as well as the effect of temperature over time on the properties of the transducer
Generalized Dynamic Analytical Model of Piezoelectric Materials for Characterization Using Electrical Impedance Spectroscopy
Piezoelectric materials have the intrinsic reversible ability to convert a mechanical strain into an electric field and their applications touch our daily lives. However, the complex physical mechanisms linking mechanical and electrical properties make these materials hard to understand. Computationally onerous models have historically been unable to adequately describe dynamic phenomena inside real piezoelectric materials, and are often limited to over-simplified first-order analytical, quasi-static, or unsatisfying phenomenological numerical approaches. We present a generalized dynamic analytical model based on first-principles that is efficiently computable and better describes these exciting materials, including higher-order coupling effects. We illustrate the significance of this model by applying it to the important 3m crystal symmetry class of piezoelectric materials that includes lithium niobate, and show that the model accurately predicts the experimentally observed impedance spectrum. This dynamic behavior is a function of almost all intrinsic properties of the piezoelectric material, so that material properties, including mechanical, electrical, and dielectric coefficients, can be readily and simultaneously extracted for any size crystal, including at the nanoscale; the only prior knowledge required is the crystal class of the material system. In addition, the model’s analytical approach is general in nature, and can increase our understanding of traditional and novel ferroelectric and piezoelectric materials, regardless of crystal size or orientation
Power capacity from earcanal dynamic motion
In-ear devices, such as a hearing aids, electronic earplugs, and wearables, need electrical power to operate. Batteries are the current solution, but unfortunately they also create other problems. For example, several hundred million users, mostly elderly, must change their hearing aid batteries on a weekly basis, which represents not only significant financial costs but a negative environmental impact. A promising alternative involves harvesting energy by converting the dynamic jaw movements into electrical energy via the earcanal. The extent that jaw movements distort the earcanal is still unknown, making it difficult to design the appropriate energy harvesting system for the earplug. Moreover, the finite element methods are barely capable to model the behavior of the earcanal distortion because of the complexity of mechanisms that deform the earcanal. However, this paper presents an alternative method, based on analytical considerations, to understand in-ear mechanical quasi-static deformations using earcanal point clouds. This model quantifies the bending and compressive movements of the earcanal. It can therefore be used to select an appropriate deformation mode for harvesting energy from the earcanalâs dynamic motion. The value of this approach was illustrated by calculating the obtainable mechanical energy from 12 human subjects. On average, the bending energy in a human earcanal was found to be three times greater than the radial compression energy. This key finding will need to be considered in the design of future in-ear energy harvesting devices. Such an energy harvesting device has the potential to revolutionize the market for in-ear wearable devices and hearing aids by complementing or replacing battery technology
- âŠ