38 research outputs found

    Addressing and Presenting Quality of Satellite Data via Web-Based Services

    Get PDF
    With the recent attention to climate change and proliferation of remote-sensing data utilization, climate model and various environmental monitoring and protection applications have begun to increasingly rely on satellite measurements. Research application users seek good quality satellite data, with uncertainties and biases provided for each data point. However, different communities address remote sensing quality issues rather inconsistently and differently. We describe our attempt to systematically characterize, capture, and provision quality and uncertainty information as it applies to the NASA MODIS Aerosol Optical Depth data product. In particular, we note the semantic differences in quality/bias/uncertainty at the pixel, granule, product, and record levels. We outline various factors contributing to uncertainty or error budget; errors. Web-based science analysis and processing tools allow users to access, analyze, and generate visualizations of data while alleviating users from having directly managing complex data processing operations. These tools provide value by streamlining the data analysis process, but usually shield users from details of the data processing steps, algorithm assumptions, caveats, etc. Correct interpretation of the final analysis requires user understanding of how data has been generated and processed and what potential biases, anomalies, or errors may have been introduced. By providing services that leverage data lineage provenance and domain-expertise, expert systems can be built to aid the user in understanding data sources, processing, and the suitability for use of products generated by the tools. We describe our experiences developing a semantic, provenance-aware, expert-knowledge advisory system applied to NASA Giovanni web-based Earth science data analysis tool as part of the ESTO AIST-funded Multi-sensor Data Synergy Advisor project

    The systematicity challenge to anti-representational dynamicism

    Get PDF
    After more than twenty years of representational debate in the cognitive sciences, anti-representational dynamicism may be seen as offering a rival and radically new kind of explanation of systematicity phenomena. In this paper, I argue that, on the contrary, anti-representational dynamicism must face a version of the old systematicity challenge: either it does not explain systematicity, or else, it is just an implementation of representational theories. To show this, I present a purely behavioral and representation-free account of systematicity. I then consider a case of insect sensorimotor systematic behavior: communicating behavior in honey bees. I conclude that anti-representational dynamicism fails to capture the fundamental trait of systematic behaviors qua systematic, i.e., their involving exercises of the same behavioral capacities. I suggest, finally, a collaborative strategy in pursuit of a rich and powerful account of this central phenomenon of high cognition at all levels of explanation, including the representational level

    Mating dances and the evolution of language: What’s the next step?

    Get PDF
    The Darwinian protolanguage hypothesis is one of the most popular theories of the evolution of human language. According to this hypothesis, language evolved through a three stage process involving general increases in intelligence, the emergence of grammatical structure as a result of sexual selection on protomusical songs, and finally the attachment of meaning to the components of those songs. The strongest evidence for the second stage of this process has been considered to be birdsong, and as a result researchers have investigated the existence of various forms of grammar in the production and comprehension of songs by birds. Here, we argue that mating dances are another relevant source of sexually-selected complexity that has until now been largely overlooked by proponents of Darwinian protolanguage, focusing especially on the dances of long-tailed manakins. We end by sketching several lines of research that should be pursued to determine the relevance of mating dances to the evolution of language

    Bayesian reverse-engineering considered as a research strategy for cognitive science

    Get PDF
    Bayesian reverse-engineering is a research strategy for developing three-level explanations of behavior and cognition. Starting from a computational-level analysis of behavior and cognition as optimal probabilistic inference, Bayesian reverse-engineers apply numerous tweaks and heuristics to formulate testable hypotheses at the algorithmic and implementational levels. In so doing, they exploit recent technological advances in Bayesian artificial intelligence, machine learning, and statistics, but also consider established principles from cognitive psychology and neuroscience. Although these tweaks and heuristics are highly pragmatic in character and are often deployed unsystematically, Bayesian reverse-engineering avoids several important worries that have been raised about the explanatory credentials of Bayesian cognitive science: the worry that the lower levels of analysis are being ignored altogether; the challenge that the mathematical models being developed are unfalsifiable; and the charge that the terms optimal and rational have lost their customary normative force. But while Bayesian reverse-engineering is therefore a viable and productive research strategy, it is also no fool-proof recipe for explanatory success

    Bayesian reverse-engineering considered as a research strategy for cognitive science

    Get PDF
    Bayesian reverse-engineering is a research strategy for developing three-level explanations of behavior and cognition. Starting from a computational-level analysis of behavior and cognition as optimal probabilistic inference, Bayesian reverse-engineers apply numerous tweaks and heuristics to formulate testable hypotheses at the algorithmic and implementational levels. In so doing, they exploit recent technological advances in Bayesian artificial intelligence, machine learning, and statistics, but also consider established principles from cognitive psychology and neuroscience. Although these tweaks and heuristics are highly pragmatic in character and are often deployed unsystematically, Bayesian reverse-engineering avoids several important worries that have been raised about the explanatory credentials of Bayesian cognitive science: the worry that the lower levels of analysis are being ignored altogether; the challenge that the mathematical models being developed are unfalsifiable; and the charge that the terms optimal and rational have lost their customary normative force. But while Bayesian reverse-engineering is therefore a viable and productive research strategy, it is also no fool-proof recipe for explanatory success
    corecore