17 research outputs found

    Combustion Synthesis of Non-Precious CuO-CeO2 Nanocrystalline Catalysts with Enhanced Catalytic Activity for Methane Oxidation

    No full text
    In this study, xCuO-CeO2 mixed oxide catalysts (Cu weight ratio x = 1.5, 3, 4.5, 6 and 15 wt.%) were prepared using solution combustion synthesis (SCS) and their catalytic activities towards the methane (CH4) oxidation reaction were studied. The combustion synthesis of the pure CeO2 and the CuO-CeO2 solid solution catalysts was performed using copper and/or cerium nitrate salt as an oxidizer and citric acid as a fuel. A variety of standard techniques, including scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), thermo-gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy were employed to reveal the microstructural, crystal, thermal and electronic properties that may affect the performance of CH4 oxidation. The CuO subphase was detected in the prepared solid solution and confirmed with XRD and Raman spectroscopy, as indicated by the XRD peaks at diffraction angles of 35.3° and 38.5° and the Ag Raman mode at 289 cm−1, which are characteristics of tenorite CuO. A profound influence of Cu content was evident, not only affecting the structural and electronic properties of the catalysts, but also the performance of catalysts in the CH4 oxidation. The presence of Cu in the CeO2 lattice obviously promoted its catalytic activity for CH4 catalytic oxidation. Among the prepared catalysts, the 6% CuO-CeO2 catalyst demonstrated the highest performance, with T50 = 502 °C and T80 = 556 °C, an activity that is associated with the availability of a fine porous structure and the enhanced surface area of this catalyst. The results demonstrate that nanocrystalline copper-ceria mixed oxide catalysts could serve as an inexpensive and active material for CH4 combustion

    A study of low-temperature CO oxidation over mesoporous Cuo-TiO\u3csub\u3e2\u3c/sub\u3e nanotube catalysts

    No full text
    © 2017 by the authors. Licensee MDPI, Basel, Switzerland. Supported copper oxide nanoparticles have attracted considerable attention as active and non-precious catalysts for many catalytic oxidation reactions. Herein, mesoporous xCuO-TiO2 nanotube catalysts were fabricated, and their activity and kinetics toward CO oxidation were studied. The morphology and structure of the prepared catalysts were systematically studied using SEM, TEM, EDS, EDX, XRD, TGA, BET, XPS, H2-TPR, and Raman techniques. The BET surface area study revealed the effect of the large surface area of the mesoporous TiO2 nanotubes on promoting the catalytic activity of prepared catalysts. The results also revealed the existence of strong metal-support interactions in the CuO-TiO2 nanotube catalyst, as indicated by the up-shift of the E2g vibrational mode of TiO2 from 144 cm-1 to 145 cm-1 and the down-shift of the binding energy (BE) of Ti 2p3/2 from 458.3 eV to 458.1 eV. The active phase of the catalyst consists of fine CuO nanoparticles dispersed on a mesoporous anatase TiO2 nanotube support. The 50-CuO-TiO2 nanotube catalyst demonstrated the highest catalytic activity with 100% CO conversion at T100 = 155°C and a reaction rate of 36 µmole s-1 g-1. Furthermore, the catalyst demonstrated excellent long-term stability with complete CO conversion that was stable for 60 h under a continuous stream. The enhanced catalytic activity is attributed to the interplay at the interface between the active CuO phase and the TiO2 nanotubes support

    A study of low-temperature CO oxidation over mesoporous Cuo-TiO2 nanotube catalysts

    No full text
    Supported copper oxide nanoparticles have attracted considerable attention as active and non-precious catalysts for many catalytic oxidation reactions. Herein, mesoporous xCuO-TiO2 nanotube catalysts were fabricated, and their activity and kinetics toward CO oxidation were studied. The morphology and structure of the prepared catalysts were systematically studied using SEM, TEM, EDS, EDX, XRD, TGA, BET, XPS, H2-TPR, and Raman techniques. The BET surface area study revealed the effect of the large surface area of the mesoporous TiO2 nanotubes on promoting the catalytic activity of prepared catalysts. The results also revealed the existence of strong metal-support interactions in the CuO-TiO2 nanotube catalyst, as indicated by the up-shift of the E2g vibrational mode of TiO2 from 144 cm-1 to 145 cm-1 and the down-shift of the binding energy (BE) of Ti 2p3/2 from 458.3 eV to 458.1 eV. The active phase of the catalyst consists of fine CuO nanoparticles dispersed on a mesoporous anatase TiO2 nanotube support. The 50-CuO-TiO2 nanotube catalyst demonstrated the highest catalytic activity with 100% CO conversion at T100 = 155 C and a reaction rate of 36 mmole s-1 g-1. Furthermore, the catalyst demonstrated excellent long-term stability with complete CO conversion that was stable for 60 h under a continuous stream. The enhanced catalytic activity is attributed to the interplay at the interface between the active CuO phase and the TiO2 nanotubes support.made possible by the grant number NPRP 6?351?1?072 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility.Scopu

    Facile Microwave Synthesis of Hierarchical Porous Copper Oxide and Its Catalytic Activity and Kinetics for Carbon Monoxide Oxidation

    Get PDF
    The synthesis of copper oxide (CuO)-based nanomaterials has received a tremendous deal of interest in recent years. Particularly, the design and development of novel CuO structures with improved physical and chemical properties have attracted immense attention, especially for catalysis applications. We report on a rational, rapid, and surfactant-free microwave synthesis (MWS) of hierarchical porous copper oxide (HP-CuO) with a three-dimensional (3D) sponge-like topology using an MWS reactor. The activity of the microwave (MW)-synthesized HP-CuO catalysts for carbon monoxide (CO) oxidation was studied and compared to CuO prepared by the conventional heating method (CHM). Results showed that HP-CuO catalysts prepared by MWS for 10 and 30 min surpassed the CuO catalyst prepared by CHM, exhibiting T80 of 98 and 115 °C, respectively, as compared to 185 °C of CuO prepared by CHM (T80 is the temperature corresponding to 80% CO conversion). In addition, the MW-synthesized HP-CuO catalysts outperformed the CHM-synthesized CuO, achieving a 100% CO conversion at 150 °C compared to 240 °C in the case of CuO prepared by CHM. Interestingly, the HP-CuO catalyst expressed workable CO conversion kinetics with a reaction rate of c.a.35 μmol s–1 g–1 at 150 °C and apparent activation energy (Ea) of 82 kJ mol–1. The HP-CuO catalyst showed excellent cycling and long-term stabilities for CO oxidation up to 4 cycles and 72 h on the stream, respectively. The enhanced catalytic activity and stability of the HP-CuO catalyst appear to result from the unique topological and structural features of HP-CuO, which were revealed by SEM, XRD, Raman, BET, TGA, XPS, and TPR techniques.This work was supported by grant no. NPRP 8-1912-1-354 from the QNRF (a member of the Qatar Foundation). We also thank the support from the National Science Foundation (CHE-1900094), Mary Eugenia Kapp's Chair Endowment, and NILES.Scopu

    Computational study on oxynitride perovskites for CO2 photoreduction

    No full text
    The photocatalytic conversion of CO2 into chemical fuels is an attractive route for recycling this greenhouse gas. However, the large scale application of such approach is limited by the low selectivity and activity of the currently used photocatalysts. Using first principles calculations, we report on the selection of optimum oxynitride perovskites as photocatalysts for photoelectrochemical CO2 reduction. The results revealed six perovskites that perfectly straddle the carbon dioxide redox potential; namely, BaTaO2N, SrTaO2N, CaTaO2N, LaTiO2N, BaNbO2N, and SrNbO2N. The electronic structure and the effective mass of the selected candidates are discussed in details, the partial and total density of states illustrated the orbital hybridization and the contribution of each element in the valence and conduction band minima. The effect of cation size in the ABO2N perovskites on the band gap is investigated and discussed. The optical properties of the selected perovskites are calculated to account for their photoactivity. Moreover, the effect of W doping on improving the selectivity of perovskites toward specific hydrocarbon product (methane) is discussed in details. This study reveals the promising optical and structural properties of oxynitride perovskite candidates for CO2 photoreduction.NPRP Grant no. NPRP 6-351-1-072 from the Qatar National Research Fund (a member of Qatar Foundation)

    Alleviating Luminescence and Quenching toward Discrimination of Ballpoint Pen Inks Using Spectroscopy and Chromatography Techniques

    No full text
    The phenomenon of luminescence and quenching is widely applied in the forensic examination of various ink materials. Here, we introduce a hybrid spectroscopic and chromatography approach to gain insights into the underlying cause of infrared luminescence (IRL) in blue ballpoint (BP) pen inks. A total of thirty BP pen ink samples from the Egyptian market were employed in this study. Insights into the origin of luminescence and quenching in the studied samples were gained based on video spectral comparator (VSC), thin layer chromatography (TLC), ultraviolet–visible (UV–Vis) spectrophotometry, and photoluminescence (PL) spectroscopy. Results showed that some of the studied inks possessed IRL due to the presence of crystal violet and some other triaryl methane dyes. Nevertheless, some ink samples did not possess IRL, despite the presence of the dyes responsible for IRL in their matrix. Interestingly, the inclusion of phthalocyanine dye in those non-luminescent ink matrices resulted in luminescence quenching, mainly due to the overlap between the absorption of phthalocyanine dye and the luminescence of the triarylmethane dyes. The IRL behavior of the ink sample under the first illumination wave band (400–485 nm) exerted control over the IRL activity across subsequent illumination wavebands, and the most effective differentiation was achieved by utilizing the first and second preset filters in VSC. The results revealed the luminescent components present in studied inks and unraveled their distinct luminescence behavior present within the ink matrix. The combination of optical spectroscopy and chromatography techniques could provide a distinctive tool to reveal the luminescence and quenching behaviors of ink dyes for the successful forensic discrimination of several BP writing pens

    Low-Temperature CO Oxidation Over CuO-TiO2 Nanocatalysts

    Get PDF
    Among the diverse catalytic processes, the heterogeneous catalytic CO oxidation is an important reaction for removal of small amounts of poisoning CO in fuel cell applications and environmental remediation. Therefore, there is a great need to develop highly active and stable nanocatalysts for catalytic CO oxidation at low temperature. Plasmonic nanocatalysts supported on reducible metal oxide such as CeO2 and TiO2 have been known for their superior catalytic activity at very low temperature but they are expensive and could suffer from particle agglomeration and sintering at high operating temperature (Veith, Lupini et al. 2009). Transition metals supported on reducible metal oxides are good substituents catalysts because of their low cost and wide-use along with activities per unit surface area similar to those of noble metal catalysts. They been shown to possess high oxygen release capacity at high range of temperature and have been shown as good candidate materials for oxygen storage and to provide oxygen for combustion and oxidation reaction at high temperature. (Royer and Duprez 2011; Hedayati, Azad et al. 2012; Song, Liu et al. 2013). In particular, supported CuO nanostructures have received a great deal of attention as non-expensive and non-plasmonic catalysts for oxidation reaction. (Caputo, Lisi et al. 2007; Hornes, Hungria et al. 2009; Royer and Duprez 2011; In, Vaughn et al. 2012; Komarneni, Shan et al. 2012; Chen, Xu et al. 2015; Fang, Xing et al. 2015; Kim and Liu 2015) In this study, we have developed a highly stable and active CuO-TiO2 nanocatalyst that can catalyze the CO oxidation at low temperature window between 80–200°C. The CuO-TiO2 nanocatalysts were prepared by the hydrothermal synthesis of TiO2 nanotubes followed by the deposition precipitation of CuO nanoparticles in alkaline conditions. We first prepared the TiO2 nanotube support by the hydrothermal treatment of TiO2 spherical particles in strong alkaline solution at 140°C. We then synthesized a series of CuO-TiO2 catalysts by deposition precipitation at constant pH, with sodium carbonate as the alkali precipitating agent and different loading ratios of Cu to TiO2 between 2% and 30 wt.%. We studied the morphological and structural properties of prepared nanocatalysts using standard physical techniques including SEM, EDX, TEM, TGA, XRD and XPS in order to understand the structure-property relationship and to optimize their catalytic activity. We carried out multiple catalytic CO oxidation cycles in a continuous flow fixed-bed reactor at low temperature range (25–300°C) and studied the catalytic activity of the different CuO-TiO2 nanocatalysts and their stability under stream. We also studied the effect of shape of the TiO2 support and the effect of the mole ratio of CuO loading on the CO conversion rates. The catalytic activity of the single counterparts of CuO and TiO2 were measured for comparison. The experimental results revealed that the CuO nanoparticles supported on TiO2 nanostructures exhibited higher activity and enhanced CO conversion rates at lower temperature, compared to un-supported CuO nanoparticles. The increased activity at lower activation temperature is probably due to the increased degree of dispersion of the active CuO phase on the TiO2 support as concluded from the EDX mapping study. Moreover, the results showed that the correlation between the catalytic activity of CuO-TiO2 nanocatalysts and both the shape and crystalline phase of the TiO2 support. The CuO supported on TiO2 nanotubes demonstarted enhanced CO conversion rates at lower temperature compared to that supported on TiO2 nanospheres. In all samples the CuO-TiO2 nanocatalysts calcined at 400°C exhibited the anatase phase of the TiO2 nanotubes support and demonstrated higher activity. The results also showed that increasing the Cu to Ti ratio could lower the activation temperature needed for CO to CO2 conversion probably due to the enhanced synergetic effect of the two mixed metal oxides. In addition, the XPS study of the CuO-TiO2 composite oxide structure indicated high degree of oxygen deficiency in CuO-TiO2 nanocatalysts with higher Cu to TiO2 loading and this could result in CO oxidation rates. The prepared CuO-TiO2 nanocatalyst demonstrated a high stability for CO oxidation for test periods of up to 5 h under stream at 200°C. The prepared CuO-TiO2 nanocatalysts could have potential applications in hydrogen purification in fuel cell systems and for CO removal in carbon dioxide lasers and in air quality industries.qscienc

    Rapid microwave assisted sol-gel synthesis of CeO2 and CexSm1-xO2 nanoparticle catalysts for CO oxidation

    No full text
    CeO2 and CexSm1-xO2 nanoparticle mixed oxides have been synthesized by microwave assisted sol-gel (MW sol-gel) and conventional sol-gel synthesis carried out at 60°C (typical sol-gel) and 100°C (approaching the MW temperature). Different characterization techniques, namely, XRD, BET, Raman, SEM, FTIR, TEM, XPS, H2-TPR, CO2-TPD, and XPS have been employed to understand the process-structure-properties relationship of the catalysts. The CO oxidation performance has been determined both in the absence and in the presence of H2 in the feed gas stream. Microwave heating yields a more thermally stable precursor material, which preserves 75% of its mass up to 600°C, attributable to the different chemical nature of the precursor, compared to the typical sol-gel material with the same composition. Varying the synthesis method has no profound effect on the surface area of the materials, which is in the range 4–35m2/g. Conventional sol-gel synthesis performed at 60 and 100°C yields CeO2 particles with a crystallite size of 29nm and 24nm compared to 21–27nm for MW sol-gel synthesis (at different power values). The MW sol-gel CexSm1-xO2 catalysts exhibit a smaller crystallite size (12–18nm). The pure ceria nanoparticles were shown to have a stoichiometry of approximately CeO1.95. The presence of Ce3+ and Sm3+ in the mixed oxide particles facilitates the presence of oxygen vacant sites, confirmed by Raman. Oxygen mobile species have been traced using H2-TPR studies and a compressive lattice strain in the 0.45–1.9% range of the cubic CexSm1-xO2 lattice were found to be strongly correlated with the CO oxidation performance in the presence and absence of H2 in the oxidation feed stream. MW sol-gel synthesis led to more active CeO2 and Ce0.5Sm0.5O2 catalysts, demonstrated by T50 (temperature where 50% CO conversion is achieved), being reduced by 131°C and 47°C, respectively, compared to typical sol-gel catalysts. Conventional synthesis performed at 100°C leads to a CeO2 catalyst of initially higher activity at a certain temperature window (220–420°C), though with a slower increase of XCO as a function of temperature compared to the MW synthesized catalyst. MW sol-gel synthesized Ce0.8Sm0.2O2 exhibited a high performance (∼90%) for CO oxidation over a period of more than 20h in stream. In addition the effect of reaction temperature and contact time (W/F) on the activity of the CeO2-based materials for CO oxidation kinetics were investigated. The activation energy of the reaction was found to be in the range 36–43kJ/mole depending on the catalyst composition.Abu Dhabi Educational Council (ADEC B3111) and Khalifa University Internal Research Fund (L1 KUIRF-210103) for supporting this research. Work by AFZ and SYA was made possible by the grant number NPRP 6-351-1-072 from the Qatar National Research Fund (a member of Qatar Foundation)

    Ultrasmall Gold Nanoparticles Anchored to Graphene and Enhanced Photothermal Effects by Laser Irradiation of Gold Nanostructures in Graphene Oxide Solutions

    No full text
    In this work we demonstrate the coupling of the photothermal effects of gold nanostructures of controlled size and shape with graphene oxide nanosheets dispersed in water. The enhanced photothermal effects can be tuned by controlling the shape and size of the gold nanostructures, which result in a remarkable increase in the heating efficiency of the laser-induced size reduction of gold nanostructures. The Raman spectra of the Au–graphene nanosheets provide direct evidence for the presence of more structural defects in the graphene lattice induced by laser irradiation of graphene oxide nanosheets in the presence of Au nanostructures. The large surface areas of the laser-reduced graphene oxide nanosheets with multiple defect sites and vacancies provide efficient nucleation sites for the ultrasmall gold nanoparticles with diameters of 2–4 nm to be anchored to the graphene surface. This defect filling mechanism decreases the mobility of the ultrasmall gold nanoparticles and, thus, stabilizes the particles against the Ostwald ripening process, which leads to a broad size distribution of the laser-size-reduced gold nanoparticles. The Au nanostructures/graphene oxide solutions and the ultrasmall gold–graphene nanocomposites are proposed as promising materials for photothermal therapy and for the efficient conversion of solar energy into usable heat for a variety of thermal, thermochemical, and thermomechanical applications

    Cu, Sm co-doping effect on the CO oxidation activity of CeO<sub>2</sub>. A combined experimental and density functional study

    No full text
    The co-doping effect of a rare earth (RE) metal and a transition metal (TM) on ceria oxidation catalysis through the evaluation of samarium-copper co-doped catalysts with Ce-Sm-xCu-O (x: 0–20 at.%, Ce/Sm = 1) nominal compositions, is discussed. The CO oxidation reaction was used as a prototype reaction due to its pivotal role in the fuel cell technology. Ce-Sm-20Cu-O catalyst presented a 64% increase in the CO oxidation activity compared to that of pristine ceria. Diffraction and Raman studies proved that the Cu, Sm co-doping induces many defects related to the dopants (Sm, Cu) and the oxygen vacant sites, while the presence of hybrid CuO/Ce-Sm(Cu)-O fluorite/SmO8 (cubic metastable) phases is the most representative scenario of this oxide microstructure. A size polydispersity of CuO phases was achieved by introducing air cooling during the microwave heating. Cu, Sm atoms were uniformly doped in CeO2 structure according to the HAADF-STEM studies. These results are in agreement with EDS analysis, where Cu, Sm and Ce are located in all the analyzed areas without any preferential distribution. The XPS studies demonstrated the co-presence of Cu2+/Cu1+ and Ce4+/Ce3+ redox couples in agreement with the Bader charge analysis from the ab initio calculations, the latter influencing greatly the oxidation activity of the catalysts. Density functional theory (DFT) calculations shed light on the oxide surface and the underlying mechanism governing the oxidation catalysis taking place. In particular, Cu2+ and Sm3+ dopants were found to be located in the nearest neighbor (NN) sites of oxygen vacancies. Different oxygen vacancies configurations were studied (single vs. double, surface vs. subsurface), where the single vacancies are more stable on the surface, whereas the double vacancies configurations are more stable on the subsurface. Regarding the Ce3+ location, in the presence of single and double oxygen vacancy, the Ce3+ ions prefer to be located in the 1st NN/2nd NN and 2nd NN of the first Ce layer, relative to the oxygen vacancy, respectively. The total Density of States (DOS) analysis of the co-doped systems revealed that the dopants induced new surface states inside the ceria band gap, which can accommodate the unpaired electrons of the vacant oxygen sites. These electronic modifications justify the much lower energy of oxygen vacancy formation (Evf) in both cases, the Sm-doped, and Cu, Sm -doped CeO2 (1 1 1) geometries. Specifically, the Evf lowering upon doping was found to be almost two times larger for the Cu adjacent oxygen vacancies (Cu2+-□) compared to the Sm ones (Sm3+-□), consistent with the CO adsorption trend as the Cu-Sm-CeO2 (1 1 1) system is energetically more favorable than the Sm-CeO2 (1 1 1) and pure CeO2 (1 1 1) surfaces
    corecore