33 research outputs found
Left and right compatibility of strict orders with fuzzy tolerance and fuzzy equivalence relations
The notion of extensionality of a fuzzy relation w.r.t. a fuzzy equivalence was first introduced by Hohle and Blanchard. Belohlavek introduced a similar definition of compatibility of a fuzzy relation w.r.t. a fuzzy equality. In [14] we generalized this notion to left compatibility, right compatibility and compatibility of arbitrary fuzzy relations and we characterized them in terms of left and right traces introduced by Fodor. In this note, we will again investigate these notions, but this time we focus on the compatibility of strict orders with fuzzy tolerance and fuzzy equivalence relations
(R1466) Ideals and Filters on a Lattice in Neutrosophic Setting
The notions of ideals and filters have studied in many algebraic (crisp) fuzzy structures and used to study their various properties, representations and characterizations. In addition to their theoretical roles, they have used in some areas of applied mathematics. In a recent paper, Arockiarani and Antony Crispin Sweety have generalized and studied these notions with respect to the concept of neutrosophic sets introduced by Smarandache to represent imprecise, incomplete and inconsistent information. In this article, we aim to deepen the study of these important notions on a given lattice in the neutrosophic setting. We show their various properties and characterizations, in particular, we pay attention to their characterizations based on of the lattice min and max operations. In addition, we study the notion of prime single-valued neutrosophic ideal (resp. filter) as interesting kind and we discuss some its set-operations, complement and associate sets
Several types of single-valued neutrosophic ideals and filters on a lattice
In this paper, we introduce and study the notions of prime, maximal and principal single-valued neutrosophic ideals (resp. filters) on a lattice. Several properties and characterizations of these types of ideals and filters are given, and relationships between them are discussed.Publisher's Versio
A binary operation-based representation of a lattice
summary:In this paper, we study and characterize some properties of a given binary operation on a lattice. More specifically, we show necessary and sufficient conditions under which a binary operation on a lattice coincides with its meet (resp. its join) operation. Importantly, we construct two new posets based on a given binary operation on a lattice and investigate some cases that these two posets have a lattice structure. Moreover, we provide some representations of a given lattice based on these new constructed lattices
Compositions of ternary relations
summary:In this paper, we introduce six basic types of composition of ternary relations, four of which are associative. These compositions are based on two types of composition of a ternary relation with a binary relation recently introduced by Zedam et al. We study the properties of these compositions, in particular the link with the usual composition of binary relations through the use of the operations of projection and cylindrical extension
Constant single valued neutrosophic graphs with applications
In this paper, we introduced a new concept of single valued neutrosophic graph (SVNG) known as constant single valued neutrosophic graph (CSVNG). Basically, SVNG is a generalization of intuitionistic fuzzy graph (IFG). More specifically, we described and explored somegraph theoretic ideas related to the introduced concepts of CSVNG. An application of CSVNG in a Wi-Fi network system is discussed and a comparison of CSVNG with constant IFG is established showing the worth of the proposed work. Further, several terms like constant function and totally constant function are investigated in the frame-work of CSVNG and their characteristics are studied
On the representation of L-M algebra by intuitionistic fuzzy subsets
In this paper we introduce the notions of intuitionistic weak alpha-cut and untuitionistic strong alpha-cut of intuitionistic fuzzy subsets of a universe X. These notions lead us to show that the set IF(X) of all intuitionistic fuzzy subsets on a universe X can be equipped with a structure of involutive theta-valued Lukasiewicz-Moisil algebra. Conversely, we show that every involutive theta-valued Lukasiewicz-Moisil algebra can be embedded into an algebra of intuitionistic fuzzy subsets.Dans ce travail nous introduisons les notions de alpha-coupes et de alpha-coupes strictes d'un ensemble flou intuitionsiste d'un référentiel X. A l'aide de ces notions, nous montrons que l'ensemble IF(X) des sous-ensembles flous intuitionistes d'un référentiel X admet une structure d'algèbre de Moisil-Lukasiewicz. theta-valente involutive. Réciproquement, nous montrons que toute algèbre de Moisil-Lukasiewicz theta-valente involutive se plonge dans une algèbre des sous-ensembles flous intuitionistes
On the representation of L-M algebra by intuitionistic fuzzy subsets
International audienceIn this paper we introduce the notions of intuitionistic weak alpha-cut and untuitionistic strong alpha-cut of intuitionistic fuzzy subsets of a universe X. These notions lead us to show that the set IF(X) of all intuitionistic fuzzy subsets on a universe X can be equipped with a structure of involutive theta-valued Lukasiewicz-Moisil algebra. Conversely, we show that every involutive theta-valued Lukasiewicz-Moisil algebra can be embedded into an algebra of intuitionistic fuzzy subsets.Dans ce travail nous introduisons les notions de alpha-coupes et de alpha-coupes strictes d'un ensemble flou intuitionsiste d'un référentiel X. A l'aide de ces notions, nous montrons que l'ensemble IF(X) des sous-ensembles flous intuitionistes d'un référentiel X admet une structure d'algèbre de Moisil-Lukasiewicz. theta-valente involutive. Réciproquement, nous montrons que toute algèbre de Moisil-Lukasiewicz theta-valente involutive se plonge dans une algèbre des sous-ensembles flous intuitionistes