5 research outputs found

    Bi-weekly surveys of water properties at two marine stations at Alexander micro-estuary

    No full text
    Bi-weekly surveys of water properties at two marine stations ~1 and 6.6 Km from the estuary mouth at bottom depths of 8 and 48 meters. These surveys include water column CTD profiles of temperature, salinity, dissolved oxygen, chlorophyll fluorescence, and Turbidity (OBS). Profile data are accompanied by discrete water samples collected by a Niskin bottle at 10 m depth, these samples are analyzed for the concentrations of chlorophyll-a and pico and nano planktonic algae and non-photosynthetic bacteria

    A long term physical and biogeochemical database of a hyper- eutrophicated Mediterranean micro-estuary

    No full text
    Long-term, multi-parameter monitoring database that covers physical, chemical, and biological water properties at several stations along a Levantine micro-estuary and its neighboring coastal sea. The data are divided into two separate databases: Monthly surveys of water properties along the estuary and Bi-weekly surveys of water properties at two marine stations

    Monthly surveys of water properties along the Alexander micro-estuary

    No full text
    Monthly surveys of water properties along the estuary. These surveys include water column CTD profiles of temperature, salinity, dissolved oxygen, chlorophyll fluorescence, and turbidity (OBS). Profile data are accompanied by Secchi depth measurements and discrete water samples collected by a horizontal Niskin bottle near the surface and near the bottom. Water samples are analyzed for the concentrations of Phosphate, Nitrate, Nitrite, Ammonium, Total and particulate nitrogen and phosphorus, total suspended solids, particulate organic matter, biological oxygen demand, chlorophyll-a, cell counts of nano and pico planktonic algae and non-photosynthetic bacteria

    Pesticides and pharmaceuticals data collected during two consecutive years in a Mediterranean micro-estuary

    No full text
    The Alexander micro-estuary, located at the eastern edge of the Mediterranean Sea, is a typical example of small water bodies that suffer from a combination of urban and agricultural pollution, and overuse of its natural water sources. It is∼6.5 km long, with maximum depth of 3 m and maximum width of 45 m. To evaluate the anthropogenic stress on the system and its ability to mitigate pollution, water samples were collected within the framework of Ruppin's Estuarine and Coastal Observatory (RECO, see Suari, Y. et al. 2019). Water samples were collected from the estuary head, which drains about 510 km2, and at a point 300 m upstream from the estuary mouth before water flows into the Mediterranean Sea. A total of 236 stormwater and 44 base-flow water samples between December 2016 and December 2018. Stormwater samples were collected every 0.25 – 4 h along the entire course of the flow events using an automated samplers (Sigma 900, Hach Company, Loveland CO, USA; and ISCO 3700 Full-Size Portable Sampler, Teledyne, Lincoln, NE, USA). Base-flow samples were taken once a month using a horizontal grab sampler (5 L, model 110B, OceanTest Equipment, Fort Lauderdale, FL, USA). All samples were filtered using 90mmGF/F filters (nominal pore size of 0.7 μm, MGF, Sartorius, Göttingen, Germany) and immediately frozen (−20 °C) before chemical analysis. Chemical analysis was performed using liquid chromatography with high-resolution mass spectrometry (LC–HRMS) analysis using a QExactive Plus hybrid FT mass spectrometer coupled with a Dionex Ultimate 3000 RS UPLC (Thermo Fisher Scientific, Waltham, MA, USA). The targeted analysis, which included 15 fungicides, 25 herbicides, 18 Insecticides, and 19 pharmaceuticals, concluded with a total of 21,142 entries. The dataset contains the sampling locations, sampling dates, flood section duration, discharge rate, and the total water volume discharged during the relevant period. The provided data offers an opportunity to explore the sources, transport, and impact of a large mixture of organic pollutants in a confined aquatic system located in an urbanized coastal environment

    Exploring Per- and Polyfluoroalkyl Substances (PFAS) in Microestuaries: Occurrence, Distribution, and Risks

    No full text
    Microestuaries have a crucial role in supporting biodiversity and human life quality in heavily populated areas. They are also the last barrier controlling fluxes of pollutants from the land to sea. Here, we report the occurrence and distribution of per- and polyfluoroalkyl substances (PFAS) during the dry season in three microestuaries. The total PFAS concentration (n = 12) at the studied estuaries was very high from a global perspective with maximum and median concentrations of 17.4 and 3.4 μg L–1, respectively. These concentrations significantly exceed the recommended benchmarks for recreational activity. Our analysis reveals that a major fraction of PFAS originated from wastewater effluents, whereas point source pollution dominated when the estuary met an industrial zone containing refinery facilities. In the case of limited dilution by natural riverine water, we suggest using carbamazepine as a steady indicator for the identification of PFAS originating from wastewater. Although the three studied microestuaries exhibit similar characteristics (morphology, precipitation, watershed size, water volume, etc.), changes in water input and connectivity to the sea, along with local anthropogenic activity, dramatically alter the occurrence, concentrations, and distribution of PFAS. This study suggests that microestuaries are subjected to high ecological risk from PFAS pollution due to intensive anthropogenic activity
    corecore