4 research outputs found

    An overview of periodontal regenerative procedures for the general dental practitioner.

    Get PDF
    The complete regeneration of the periodontal tissues following periodontal disease remains an unmet challenge, and has presented clinicians with a remarkably difficult clinical challenge to solve given the extensive research in this area and our current understanding of the biology of the periodontal tissues. In particular as clinicians we look for treatments that will improve the predictability of the procedure, improve the magnitude of the effect of treatment, and perhaps most importantly in the long term would extend the indications for treatment beyond the need for single enclosed bony defects to allow for suprabony regeneration, preferably with beneficial effects on the gingival soft tissues. A rapid development in both innovative methods and products for the correction of periodontal deficiencies have been reported during the last three decades. For example, guided tissue regeneration with or without the use of bone supplements has been a well-proven treatment modality for the reconstruction of bony defects prior to the tissue engineering era. Active biomaterials have been subsequently introduced to the periodontal community with supporting dental literature suggesting that certain factors should be taken into consideration when undertaking periodontal regenerative procedures. These factors as well as a number of other translational research issues will need to be addressed, and ultimately it is vital that we do not extrapolate results from pre-clinical and animal studies without conducting extensive randomized clinical trials to substantiate outcomes from these procedures. Whatever the outcomes, the pursuit of regeneration of the periodontal tissues remains a goal worth pursuing for our patients. The aim of the review, therefore is to update clinicians on the recent advances in both materials and techniques in periodontal regenerative procedures and to highlight the importance of both patient factors and the technical aspects of regenerative procedures

    Characterization of LY3023414, a Novel PI3K/mTOR Dual Inhibitor Eliciting Transient Target Modulation to Impede Tumor Growth

    No full text
    The phosphoinositide-3 kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway is among the most frequently altered pathways in cancer cell growth and survival. LY3023414 is a complex fused imidazoquinolinone with high solubility across a wide pH range designed to inhibit class I PI3K isoforms and mTOR kinase. Here we describe the in vitro and in vivo activity of LY3023414. LY3023414 was highly soluble at pH 2-7. In biochemical testing against approximately 266 kinases, LY3023414 potently and selectively inhibited class I PI3K isoforms, mTORC1/2, and DNA-PK at low nanomolar concentrations. In vitro, inhibition of PI3K/AKT/mTOR signaling by LY3023414 caused G1 cell-cycle arrest and resulted in broad antiproliferative activity in cancer cell panel screens. In vivo, LY3023414 demonstrated high bioavailability and dose-dependent dephosphorylation of PI3K/AKT/mTOR pathway downstream substrates such as AKT, S6K, S6RP, and 4E-BP1 for 4 to 6 hours, reflecting the drug's half-life of 2 hours. Of note, equivalent total daily doses of LY3023414 given either once daily or twice daily inhibited tumor growth to similar extents in multiple xenograft models, indicating that intermittent target inhibition is sufficient for antitumor activity. In combination with standard of care drugs, LY3023414 demonstrated additive antitumor activity. The novel, orally bioavailable PI3K/mTOR inhibitor LY3023414 is highly soluble and exhibits potent in vivo efficacy via intermittent target inhibition. It is currently being evaluated in phase 1 and 2 trials for the treatment of human malignancies

    PHAEOCHROMOCYTOMA AND THE OBSTETRICIAN

    No full text
    corecore