130 research outputs found

    Actin-Based Cell Protrusion in a 3D Matrix

    Get PDF
    Cell migration has been well studied in 2D, but how this relates to movement in physiological 3D tissues and matrix is not clear, particularly in vertebrate interstitial matrix. In 3D matrix cells actin polymerisation directly contributes to the formation of lamellipodia to facilitate migration and invasion (mesenchymal movement), analogous to 2D migration; actomyosin contractility promotes bleb formation to indirectly promote protrusion (amoeboid movement). Mesenchymal migration can be characterised by polymerisation of actin to form filopodial protrusions, in the absence of lamellipodia. Translocation of the nucleus is emerging as a critical step due to the constrictive environment of 3D matrices, and the mechanisms that transmit force to the nucleus and allow movement are beginning to be uncovered. Cell migration controls developmental processes (gastrulation and tissue patterning), tissue homeostasis (wound repair and inflammatory responses), and the pathobiology of diseases (cancer metastasis and inflammation). Understanding how cells move in physiologically relevant environments is of major importance, and the molecular machinery behind cell movement has been well studied on 2D substrates, beginning over half a century ago. Studies over the past decade have begun to reveal the mechanisms that control cell motility within 3D microenvironments – some similar to, and some highly divergent from those found in 2D. In this review we focus on migration and invasion of cells powered by actin, including formation of actin-rich protrusions at the leading edge, and the mechanisms that control nuclear movement in cells moving in a 3D matrix

    Actin on trafficking: could actin guide directed receptor transport?

    Get PDF
    Here, we present emerging ideas surrounding the interplay between the actin cytoskeleton and receptor transport and activation. The bulk of actin dynamics in cells is thought to contribute to architecture and mobility. Actin also contributes to trafficking, acting as a molecular scaffold, providing force to deform membranes, facilitating vesicle abscission or propelling a vesicle through the cytoplasm1,2 and recent studies highlight important connections between the directed trafficking of receptors and the impact on cell migration and actin dynamics. Additionally, a number of newly described actin nucleation promoting factors, such as the vesicle associated protein WASH, reveal unexpected roles of actin in membrane traffic and suggest that the cell dedicates a significant proportion of its regulation of actin dynamics to controlling trafficking

    Soil organic carbon cycling in a long-term agricultural experiment,Switzerland

    Get PDF
    Soils are one of the largest organic carbon pools and changes in the carbon release from soils has considerable impact on the composition of atmospheric CO2. Alongside the accelerated carbon release from soils by anthro-pogenic warming (Crowther et al., 2016), agricultural use strongly affects soil organic carbon (SOC) (Johnstonet al., 2009). Conversion from conventional to organic farming has been suggested a valuable contribution to sequester SOC providing a great mitigation potential within agricultural practices (Smith et al., 2008).Here we present SOC contents and 14C activity under two different farming practices in the long-termagricultural DOK trial at Therwil, Switzerland (Mäder et al., 2002). In this long-lasting agricultural experiment, we compare biodynamic farming (biodyn), which receives manure and biodynamic preparations, with conventional farming (conmin), which receives only mineral fertilizers. We analyzed functional SOC fractions from both farming practices for SOC concentration and radiocarbon (∆14C) in two soil layers (0-20 cm and 20-50 cm).Three SOC fractions were obtained by density and particle size fractionation: particular organic matter (POM,labile pool), mineral-associated organic matter 20μm (MOM >20μm, labile pool).Our results clearly show higher SOC concentrations for biodyn compared to conmin in all SOC fractions in the upper soil layer (0-20 cm). In the subsoil (20-50 cm) we found a negligible influence of farming practices with depth. High ∆14C values in the POM and >20μm fraction indicated that they are a more labile and fastcycling carbon pool, whereas lower∆14C values in the 20μm fraction, with higher ∆14C values in the biodyn system suggesting greater input of fresh plant material with a faster turnover

    Metabolic fluxes in the central carbon metabolism of Dinoroseobacter shibae and Phaeobacter gallaeciensis, two members of the marine Roseobacter clade

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the present work the central carbon metabolism of <it>Dinoroseobacter shibae </it>and <it>Phaeobacter gallaeciensis </it>was studied at the level of metabolic fluxes. These two strains belong to the marine <it>Roseobacter </it>clade, a dominant bacterial group in various marine habitats, and represent surface-associated, biofilm-forming growth (<it>P. gallaeciensis</it>) and symbiotic growth with eukaryotic algae (<it>D. shibae</it>). Based on information from recently sequenced genomes, a rich repertoire of pathways has been identified in the carbon core metabolism of these organisms, but little is known about the actual contribution of the various reactions <it>in vivo</it>.</p> <p>Results</p> <p>Using <sup>13</sup>C labelling techniques in specifically designed experiments, it could be shown that glucose-grown cells of <it>D. shibae </it>catabolise the carbon source exclusively via the Entner-Doudoroff pathway, whereas alternative routes of glycolysis and the pentose phosphate pathway are obviously utilised for anabolic purposes only. Enzyme assays confirmed this flux pattern and link the lack of glycolytic flux to the absence of phosphofructokinase activity. The previously suggested formation of phosphoenolpyruvate from pyruvate during mixotrophic CO<sub>2 </sub>assimilation was found to be inactive under the conditions studied. Moreover, it could be shown that pyruvate carboxylase is involved in CO<sub>2 </sub>assimilation and that the <it>cyclic </it>respiratory mode of the TCA cycle is utilised. Interestingly, the use of intracellular pathways was highly similar for <it>P. gallaeciensis</it>.</p> <p>Conclusion</p> <p>The present study reveals the first insight into pathway utilisation within the <it>Roseobacter </it>group. Fluxes through major intracellular pathways of the central carbon metabolism, which are closely linked to the various important traits found for the <it>Roseobacter </it>clade, could be determined. The close similarity of fluxes between the two physiologically rather different species might provide the first indication of more general key properties among members of the <it>Roseobacter </it>clade which may explain their enormous success in the marine realm.</p

    Rapid fabrication and interface structure of highly faceted epitaxial Ni-Au solid solution nanoparticles on sapphire

    Get PDF
    Supersaturated Ni-Au solid solution particles were synthesized by rapid solid-state dewetting of bilayer thin films deposited onto c-plane sapphire single-crystals. Rapid thermal annealing above the miscibility gap of the Ni-Au system followed by quenching to room temperature resulted in textured and faceted submicron-sized particles as a function of alloying content in the range of 0-28 at% Au. Morphologically, the observed kinetic crystal shapes are confined by close-packed planes; in addition, high-index facets are identified as a function of alloying content by TEM cross-sectioning and equilibrium crystal shape simulations. All samples exhibit a distinct out-of-plane as well as in-plane texture along densely packed directions. Lattice parameters extracted from independent orthogonal X-ray and electron diffraction techniques prove the formation of a solid solution without tetragonal distortion imposed by the sapphire substrate. At the particle-substrate interface of highly alloyed particles segregation of Au atoms as well as dislocations in stand-off position are found. These observations are in-line with a semi-coherent interface, where Au segregation is triggered by the reduction of the overall strain energy due to: (i) a lower shear modulus on the particle side of the interface, (ii) the shifting of misfit dislocations in stand-off position further away from the stiffer substrate and (iii) a reduction of intrinsic misfit dislocation strain energy on the tensile side. In addition, the mechanical properties of pure and alloyed particles were characterized by in situ compression experiments in the SEM. Typical force-displacement data of defect-free single-crystals were obtained, reaching the theoretical strength of Ni for particles smaller than 400 nm. Alloying changes the mechanical response from an intermittent and discrete plastic flow behavior into a homogeneous deformation regime at large compressive strain

    Laminin N-terminus α31 is upregulated in invasive ductal breast cancer and changes the mode of tumour invasion

    Get PDF
    AbstractLaminin N-terminus α31 (LaNt α31) is an alternative splice isoform derived from the laminin α3 gene. The LaNt α31 protein is enriched around the terminal duct lobular units in normal breast tissue. In the skin and cornea the protein influences epithelial cell migration and tissue remodelling. However, LaNt α31 has never been investigated in a tumour environment. Here we analysed LaNt α31 in invasive ductal carcinoma and determined its contribution to breast carcinoma invasion. LaNt α31 expression and distribution were analysed by immunohistochemistry in human breast tissue biopsy sections and tissue microarrays covering 232 breast cancer samples. This analysis revealed LaNt α31 to be upregulated in 56 % of invasive ductal carcinoma specimens compared with matched normal tissue, and further increased in nodal metastasis compared with the tumour mass in 45 % of samples. 65.8 % of triple negative cases displayed medium to high LaNt α31 expression. To study LaNt α31 function, an adenoviral system was used to induce expression in MCF-7 and MDA-MB-231 cells. Metabolic activity, 2D cell migration, and invasion into collagen hydrogels were not significantly different between LaNt α31 overexpressing cells and control treated cells. However, LaNt α31 overexpressing MDA-MB-231 cells displayed a striking change in their mode of invasion into laminin-containing Matrigel; changing from multicellular streaming to individual cellular-invasion. In agreement with these results, 66.7% of the tumours with the highest LaNt α31 expression were non-cohesive. Together these findings indicate that breast cancer-associated changes in LaNt α31 expression could directly contribute to tumour invasiveness, and that this little-studied protein may become a therapeutic target.</jats:p

    Using Long-Duration Static Stretch Training to Counteract Strength and Flexibility Deficits in Moderately Trained Participants

    Get PDF
    Many sports injuries result in surgery and prolonged periods of immobilization, which may lead to significant atrophy accompanied by loss of maximal strength and range of motion and, therefore, a weak-leg/strong-leg ratio (as an imbalance index ∆ ) lower than 1. Consequently, there are common rehabilitation programs that aim to enhance maximal strength, muscle thickness and flexibility; however, the literature demonstrates existing strength imbalances after weeks of rehabilitation. Since no study has previously been conducted to investigate the effects of long-duration static stretch training to treat muscular imbalances, the present research aims to determine the possibility of counteracting imbalances in maximal strength and range of motion. Thirty-nine athletic participants with significant calf muscle imbalances in maximal strength and range of motion were divided into an intervention group (one-hour daily plantar flexors static stretching of the weaker leg for six weeks) and a control group to evaluate the effects on maximal strength and range of motion with extended and bent knee joint. Results show significant increases in maximal strength (d = 0.84–1.61, p < 0.001–0.005) and range of motion (d = 0.92–1.49, p < 0.001–0.002) following six weeks of static stretching. Group * time effects ( p < 0.001–0.004, η² = 0.22–0.55) revealed ∆ changes in the intervention group from 0.87 to 1.03 for maximal strength and from 0.92 to 1.11 in range of motion. The results provide evidence for the use of six weeks of daily, one hour stretching to counteract muscular imbalances. Related research in clinical settings after surgery is suggested

    Laminin N-terminus α31 is upregulated in invasive ductal breast cancer and changes the mode of tumour invasion

    Get PDF
    Laminin N-terminus α31 (LaNt α31) is an alternative splice isoform derived from the laminin α3 gene. The LaNt α31 protein is enriched around the terminal duct lobular units in normal breast tissue. In the skin and cornea the protein influences epithelial cell migration and tissue remodelling. However, LaNt α31 has never been investigated in a tumour environment. Here we analysed LaNt α31 in invasive ductal carcinoma and determined its contribution to breast carcinoma invasion. LaNt α31 expression and distribution were analysed by immunohistochemistry in human breast tissue biopsy sections and tissue microarrays covering 232 breast cancer samples. This analysis revealed LaNt α31 to be upregulated in 56% of invasive ductal carcinoma specimens compared with matched normal tissue, and further increased in nodal metastasis compared with the tumour mass in 45% of samples. 65.8% of triple negative cases displayed medium to high LaNt α31 expression. To study LaNt α31 function, an adenoviral system was used to induce expression in MCF-7 and MDA-MB-231 cells. 2D cell migration and invasion into collagen hydrogels were not significantly different between LaNt α31 overexpressing cells and control treated cells. However, LaNt α31 overexpression reduced the proliferation rate of MCF-7 and MDA-MB-231 cells. Moreover, LaNt α31 overexpressing MDA-MB-231 cells displayed a striking change in their mode of invasion into laminin-containing Matrigel; changing from multicellular streaming to individual cellular-invasion. In agreement with these results, 66.7% of the tumours with the highest LaNt α31 expression were non-cohesive. Together these findings indicate that breast cancer-associated changes in LaNt α31 expression could contribute to the processes involved in tumour invasion and may represent a new therapeutic target.</jats:p

    The Holocene lake-evaporation history of the afro-alpine Lake Garba Guracha in the Bale Mountains, Ethiopia, based on δ18O records of sugar biomarker and diatoms

    Get PDF
    In eastern Africa, there are few long, high-quality records of environmental change at high altitudes, inhibiting a broader understanding of regional climate change. We investigated a Holocene lacustrine sediment archive from Lake Garba Guracha, Bale Mountains, Ethiopia, (3,950 m a.s.l.), and reconstructed high-altitude lake evaporation history using δ18O records derived from the analysis of compound-specific sugar biomarkers and diatoms. The δ18Odiatom and δ18Ofuc records are clearly correlated and reveal similar ranges (7.9‰ and 7.1‰, respectively). The lowest δ18O values occurred between 10 and 7 cal ka BP and were followed by a continuous shift towards more positive δ18O values. Due to the aquatic origin of the sugar biomarker and the similar trends of δ18Odiatom, we suggest that our lacustrine δ18Ofuc record reflects δ18Olake water. Therefore, without completely excluding the influence of the ‘amount-effect’ and the ‘source-effect‘, we interpret our record to reflect primarily the precipitation-to-evaporation ratio (P/E). We conclude that precipitation increased at the beginning of the Holocene, leading to an overflowing lake between ~10 and ~8 cal ka BP, indicated by low δ18Olake water values interpreted as reduced evaporative enrichment. This is followed by a continuous trend towards drier conditions, indicating at least a seasonally closed lake system
    • …
    corecore