93 research outputs found

    Chronic and Residual Effects of a Two-Week Foam Rolling Intervention on Ankle Flexibility and Dynamic Balance

    Get PDF
    Background Foam rolling has been shown to acutely improve joint range of motion (ROM). However, limited knowledge exists on the chronic and residual effects. The primary purpose of this study was to examine the chronic and residual effects of a 2-week roller–massager intervention on ankle dorsiflexion ROM and dynamic balance. Methods Forty-two participants (24.3 ± 2.5 years, 33 males, 9 females) were randomly assigned to either roller-massage (RM) or control group (= no intervention). Ankle ROM was assessed with the weight-bearing lunge test (WBLT) and dynamic balance with the Y-Balance test for both limbs. The RM group was instructed to roll their calf muscles for three sets of 60 s per leg on 6 days a week over 2 weeks. Acute effects were measured during baseline testing for dorsiflexion ROM and dynamic balance immediately after foam rolling. Chronic and residual effects were measured 1 day and 7 days after the intervention period. Multivariate ANOVA was performed for post-hoc comparisons to determine acute, chronic, and residual effects. Results Significant acute and chronic foam rolling effects ( p <0.05) were found for ankle dorsiflexion ROM. The chronic increase in ROM slightly decreased 7 days post-intervention but remained significantly above baseline ( p < 0.05). Regarding dynamic balance, there were no acute but chronic ( p < 0.05) and residual ( p < 0.05) effects. Conclusion Using a roller–massager for a 2-week period chronically increases ROM and dynamic balance. These increases are still significant 7 days post-intervention emphasizing the sustainability of foam rolling effects

    APPLICATION OF AN ARMA-MODEL AS A METHOD OF TIME-VARIANT SPECTRAL ANALYSIS TO SURFACE EMG-SIGNALS IN SWIM BENCH EXERCISES

    Get PDF
    The purpose of this study is the determination of spectral parameters of surface EMG signals during a swim specific exercise by means of an ARMA model. This method is suitable for nonstationary signals such as EMG, MEG and EMG. Nine female top elite swimmers participated in this research. During a two minute swim bench exercise the momentary median frequency decreases. Changes of the EMG power for the diHerent wave bands could be found. By means of this analysis information aboul fatigue and changes in the intramuscular coordination are possible

    Time-dependent postural control adaptations following a neuromuscular warm-up in female handball players:A randomized controlled trial

    Get PDF
    Background: Female handball athletes are at a particular risk of sustaining lower extremity injuries. The study examines time-dependent adaptations of static and dynamic balance as potential injury risk factors to a specific warm-up program focusing on neuromuscular control. Methods: Fourty one (24.0 +/- 5.9 years) female handball athletes were randomized to an intervention or control group. The intervention group implemented a 15-min specific neuromuscular warm-up program, three times per week for eleven weeks, whereas the control group continued with their regular warm-up. Balance was assessed at five time points. Measures included the star excursion balance test (SEBT), and center of pressure (COP) sway velocity during single-leg standing. Results: No baseline differences existed between groups in demographic data. Adherence to neuromuscular warm-up was 88.7 %. Mean COP sway velocity decreased significantly over time in the intervention group (-14.4 %; p <.001), but not in the control group (-6.2 %; p = 0.056). However, these effects did not differ significantly between groups (p = .098). Mean changes over time in the SEBT score were significantly greater (p = .014) in the intervention group (+5.48) compared to the control group (+3.45). Paired t-tests revealed that the first significant balance improvements were observed after 6 weeks of training. Conclusions: A neuromuscular warm-up positively influences balance variables associated with an increased risk of lower extremity injuries in female handball athletes. The course of adaptations suggests that a training volume of 15 min, three times weekly over at least six weeks produces measurable changes

    Using Long-Duration Static Stretch Training to Counteract Strength and Flexibility Deficits in Moderately Trained Participants

    Get PDF
    Many sports injuries result in surgery and prolonged periods of immobilization, which may lead to significant atrophy accompanied by loss of maximal strength and range of motion and, therefore, a weak-leg/strong-leg ratio (as an imbalance index ∆ ) lower than 1. Consequently, there are common rehabilitation programs that aim to enhance maximal strength, muscle thickness and flexibility; however, the literature demonstrates existing strength imbalances after weeks of rehabilitation. Since no study has previously been conducted to investigate the effects of long-duration static stretch training to treat muscular imbalances, the present research aims to determine the possibility of counteracting imbalances in maximal strength and range of motion. Thirty-nine athletic participants with significant calf muscle imbalances in maximal strength and range of motion were divided into an intervention group (one-hour daily plantar flexors static stretching of the weaker leg for six weeks) and a control group to evaluate the effects on maximal strength and range of motion with extended and bent knee joint. Results show significant increases in maximal strength (d = 0.84–1.61, p < 0.001–0.005) and range of motion (d = 0.92–1.49, p < 0.001–0.002) following six weeks of static stretching. Group * time effects ( p < 0.001–0.004, η² = 0.22–0.55) revealed ∆ changes in the intervention group from 0.87 to 1.03 for maximal strength and from 0.92 to 1.11 in range of motion. The results provide evidence for the use of six weeks of daily, one hour stretching to counteract muscular imbalances. Related research in clinical settings after surgery is suggested

    Can the recent sex-specific evolutions in elite running performances be attributed to advanced footwear technology?

    Get PDF
    Recent improvements in elite running performances across all distances have been largely attributed to the introduction of advanced footwear technology (AFT), which features a curved and stiff plate working synergistically with a new generation of midsole foams demonstrating enhanced resilience and compliance. These recent improvements appear to be considerably more pronounced in women's events, highlighted by improvements in road racing world records by an average of 3.7% (range: 2.6%–5.2%) compared to mean progressions of 1.5% (range: 1.3%–1.9%) in the same men's events. Although there is a growing body of research investigating the mechanisms underpinning running performance enhancements derived from AFT, there remains no explanation for potential sex-based differences in their benefits. We overview the currently available evidence and highlight why the recent direction of AFT research provides a barrier to progress by focusing primarily on male athletes. We subsequently provide our perspective on why women may be benefiting from the new generation of shoes more than men, suggest potential mechanisms leading to hypotheses that need to be further investigated in upcoming studies, and finally propose that factors outside of footwear innovation may have concurrently driven the recently observed performance evolutions

    Physiology of stretch-mediated hypertrophy and strength increases: A narrative review

    Get PDF
    Increasing muscle strength and cross-sectional area is of crucial importance to improve or maintain physical function in musculoskeletal rehabilitation and sports performance. Decreases in muscular performance are experienced in phases of reduced physical activity or immobilization. These decrements highlight the need for alternative, easily accessible training regimens for a sedentary population to improve rehabilitation and injury prevention routines. Commonly, muscle hypertrophy and strength increases are associated with resistance training, typically performed in a training facility. Mechanical tension, which is usually induced with resistance machines and devices, is known to be an important factor that stimulates the underlying signaling pathways to enhance protein synthesis. Findings from animal studies suggest an alternative means to induce mechanical tension to enhance protein synthesis, and therefore muscle hypertrophy by inducing high-volume stretching. Thus, this narrative review discusses mechanical tension-induced physiological adaptations and their impact on muscle hypertrophy and strength gains. Furthermore, research addressing stretch-induced hypertrophy is critically analyzed. Derived from animal research, the stretching literature exploring the impact of static stretching on morphological and functional adaptations was reviewed and critically discussed. No studies have investigated the underlying physiological mechanisms in humans yet, and thus the underlying mechanisms remain speculative and must be discussed in the light of animal research. However, studies that reported functional and morphological increases in humans commonly used stretching durations of \u3e 30 min per session of the plantar flexors, indicating the importance of high stretching volume, if the aim is to increase muscle mass and maximum strength. Therefore, the practical applicability seems limited to settings without access to resistance training (e.g., in an immobilized state at the start of rehabilitation), as resistance training seems to be more time efficient. Nevertheless, further research is needed to generate evidence in different human populations (athletes, sedentary individuals, and rehabilitation patients) and to quantify stretching intensity

    Gait Stability and Its Influencing Factors in Older Adults

    Get PDF
    A stable gait pattern is a prerequisite to successfully master various activities of daily living. Furthermore, reduced gait stability is associated with a higher risk of falling. To provide specific intervention strategies to improve gait stability, gaining detailed knowledge of the underlying mechanism and influencing factors is of utmost importance. The effects of relevant influencing factors on gait stability are poorly examined, yet. Therefore, the aim of the current study was to quantify the effects of various influencing factors on gait stability. In a cross-sectional study, we assessed dynamic gait stability and relevant influencing factors in 102 older adults (age &gt;65 years). In addition to dynamic gait stability (largest Lyapunov exponent [LLE] and gait variability measures) during normal over-ground (single-task: ST) and dual-task (DT) walking, we registered the following influencing factors: health status (SF12), pain status (painDETECT, SES), fear of falling (falls efficacy scale), depression (CES-D), cognition performance (Stroop test), physical activity (Freiburger Fragebogen zur körperlichen Aktivität), proprioception (joint position sense), peripheral sensation (mechanical and vibration detection threshold), balance performance (static balance on force plate) and muscular fitness (instrumented sit-to-stand test). We used a principal components regression to link the identified principal components with the gait stability and gait variability responses. The four principal components “strength and gender” (e.g., p = 0.001 for LLE during ST), “physical activity” (e.g., p = 0.006 for LLE during ST), “pain” (e.g., p = 0.030 for LLE during DT) and “peripheral sensation” (e.g., p = 0.002 for LLE during ST) were each significantly associated with at least two of the analyzed gait stability/variability measures. The dimension “balance” was a significant predictor in only one gait measure. While “proprioception” tends to correlate with a gait variability measure, we did not find a dependency of mental health on any gait measure. In conclusion, the participants' ability to recover from small perturbations (as measured with the largest Lyapunov exponent) seems to be related to gender and strength, the amount of physical activity the participants spent every week, peripheral sensation and pain status. Since the explained variance is still rather low, there could be more relevant factors that were not addressed, yet

    Residual effects of muscle strength and muscle power training and detraining on physical function in community-dwelling prefrail older adults: a randomized controlled trial

    Get PDF
    Background Although resistance exercise interventions have been shown to be beneficial in prefrail or frail older adults it remains unclear whether there are residual effects when the training is followed by a period of detraining. The aim of this study was to establish the sustainability of a muscle power or muscle strength training effect in prefrail older adults following training and detraining. Methods 69 prefrail community-dwelling older adults, aged 65–94 years were randomly assigned into three groups: muscle strength training (ST), muscle power training (PT) or controls. The exercise interventions were performed for 60 minutes, twice a week over 12 weeks. Physical function (Short Physical Performance Battery=SPPB), muscle power (sit-to-stand transfer=STS), self-reported function (SF-LLFDI) and appendicular lean mass (aLM) were measured at baseline and at 12, 24 and 36 weeks after the start of the intervention. Results For the SPPB, significant intervention effects were found at 12 weeks in both exercise groups (ST: p = 0.0047; PT: p = 0.0043). There were no statistically significant effects at 24 and 36 weeks. In the ST group, the SPPB declined continuously after stop of exercising whereas the PT group and controls remained unchanged. No effects were found for muscle power, SF-LLFDI and aLM. Conclusions The results showed that both intervention types are equally effective at 12 weeks but did not result in statistically significant residual effects when the training is followed by a period of detraining. The unchanged SPPB score at 24 and 36 weeks in the PT group indicates that muscle power training might be more beneficial than muscle strength training. However, more research is needed on the residual effects of both interventions. Taken the drop-out rates (PT: 33%, ST: 21%) into account, muscle power training should also be used more carefully in prefrail older adults

    Clinical Study Standardized Application of Laxatives and Physical Measures in Neurosurgical Intensive Care Patients Improves Defecation Pattern but Is Not Associated with Lower Intracranial Pressure

    Get PDF
    Background. Inadequate bowel movements might be associated with an increase in intracranial pressure in neurosurgical patients. In this study we investigated the influence of a structured application of laxatives and physical measures following a strict standard operating procedure (SOP) on bowel movement, intracranial pressure (ICP), and length of hospital stay in patients with a serious acute cerebral disorder. Methods. After the implementation of the SOP patients suffering from a neurosurgical disorder received pharmacological and nonpharmacological measures to improve bowel movements in a standardized manner within the first 5 days after admission to the intensive care unit (ICU) starting on day of admission. We compared mean ICP levels, length of ICU stay, and mechanical ventilation to a historical control group. Results. Patients of the intervention group showed an adequate defecation pattern significantly more often than the patients of the control group. However, this was not associated with lower ICP values, fewer days of mechanical ventilation, or earlier discharge from ICU. Conclusions. The implementation of a SOP for bowel movement increases the frequency of adequate bowel movements in neurosurgical critical care patients. However, this seems not to be associated with reduced ICP values
    corecore