3,336 research outputs found

    TeV gamma rays from blazars beyond z=1?

    Full text link
    At TeV energies, the gamma-ray horizon of the universe is limited to redshifts z<<1, and, therefore, any observation of TeV radiation from a source located beyond z=1 would call for a revision of the standard paradigm. While robust observational evidence for TeV sources at redshifts z>1 is lacking at present, the growing number of TeV blazars with redshifts as large as z~0.5 suggests the possibility that the standard blazar models may have to be reconsidered. We show that TeV gamma rays can be observed even from a source at z>1, if the observed gamma rays are secondary photons produced in interactions of high-energy protons originating from the blazar jet and propagating over cosmological distances almost rectilinearly. This mechanism was initially proposed as a possible explanation for the TeV gamma rays observed from blazars with redshifts z~0.2, for which some other explanations were possible. For TeV gamma-ray radiation detected from a blazar with z>1, this model would provide the only viable interpretation consistent with conventional physics. It would also have far-reaching astronomical and cosmological ramifications. In particular, this interpretation would imply that extragalactic magnetic fields along the line of sight are very weak, in the range 0.01 < fG < 10 fG, assuming random fields with a correlation length of 1 Mpc, and that acceleration of E> 0.1 EeV protons in the jets of active galactic nuclei can be very effective.Comment: 8 pages, 4 figure

    A Measurement of the UHECR Spectrum with the HiRes FADC Detector

    Full text link
    We have measured the energy spectrum of ultra-high energy cosmic rays (UHECR) with the HiRes FADC detector (HiRes-2) in monocular mode. A detailed Monte Carlo simulation of the detector response to air showers has been used to calculate the energy dependent acceptance of the air fluorescence detector. The measured spectrum complements the measurement by the HiRes-1 detector down to lower energies. Systematic effects of the assumed input spectrum and composition on the aperture are presented, as well as systematics due to the atmosphere.Comment: 6 pages, 8 figures, to be included in the CRIS '04 (Cosmic Ray International Seminar) proceedings (Nucl. Phys. B

    Imaging of Hepatocellular Carcinoma by Computed Tomography and Magnetic Resonance Imaging: State of the Art

    Get PDF
    Hepatocellular carcinoma (HCC) is a very frequent tumor worldwide. Its incidence is linked to the distribution of liver cirrhosis and viral hepatitis, which are the main risk factors for the development of HCC. For the evaluation of the cirrhotic liver and for the diagnosis of HCC, multidetector computed tomography (MDCT) proved to be a robust and reliable tool. In MDCT the diagnosis of HCC can be made based on neovascularization with increased arterial and decreased portal venous supply. With modern magnetic resonance imaging (MRI), spatial resolution and robustness increased dramatically. Beside the evaluation of neovascularization by means of gadolinium-enhanced early dynamic MRI, the main advantages of MRI are additional information on tissue composition and liver-specific function. With diffusion-weighted imaging or plain T(1)- and T(2)-weighted sequences, different tissue elements like fat, hemorrhage, glycogen, edema and cellular density can be evaluated. Liver-specific contrast agents give insight into the Kupffer cell density or the hepatocellular function. The integration of all these parts into the MR examination allows for a very high detection rate for overt HCC nowadays, although very small HCCs are still a challenge. Moreover, insight into the different stages of hepatocarcinogenesis can be possible with MRI. Despite its limited availability in some countries, it has to be rendered to be the modality of choice for the distinct evaluation of the cirrhotic liver. Copyright (C) 2009 S. Karger AG, Base

    Shocks in relativistic transverse stratified jets, a new paradigm for radio-loud AGN

    Full text link
    The transverse stratification of active galactic nuclei (AGN) jets is suggested by observations and theoretical arguments, as a consequence of intrinsic properties of the central engine (accretion disc + black hole) and external medium. On the other hand, the one-component jet approaches are heavily challenged by the various observed properties of plasmoids in radio jets (knots), often associated with internal shocks. Given that such a transverse stratification plays an important role on the jets acceleration, stability, and interaction with the external medium, it should also induce internal shocks with various strengths and configurations, able to describe the observed knots behaviours. By establishing a relation between the transverse stratification of the jets, the internal shock properties, and the multiple observed AGN jet morphologies and behaviours, our aim is to provide a consistent global scheme of the various AGN jet structures. Working on a large sample of AGN radio jets monitored in very long baseline interferometry (VLBI) by the MOJAVE collaboration, we determined the consistency of a systematic association of the multiple knots with successive re-collimation shocks. We then investigated the re-collimation shock formation and the influence of different transverse stratified structures by parametrically exploring the two relativistic outflow components with the specific relativistic hydrodynamic (SRHD) code AMRVAC. We were able to link the different spectral classes of AGN with specific stratified jet characteristics, in good accordance with their VLBI radio properties and their accretion regimes.Comment: 16 pages, 12 figures, accepted for publication in A&

    New AGNs discovered by H.E.S.S

    Full text link
    During the last year, six new Active Galactic Nuclei (AGN) have been discovered and studied by H.E.S.S. at Very High Energies (VHE). Some of these recent discoveries have been made thanks to new enhanced analysis methods and are presented at this conference for the first time. The three blazars 1ES 0414+009, SHBL J001355.9-185406 and 1RXS J101015.9-311909 have been targeted for observation due to their high levels of radio and X-ray fluxes, while the Fermi/LAT catalogue of bright sources triggered the observation of PKS 0447-439 and AP Librae. Additionally, the BL Lac 1ES 1312-423 was discovered in the field-of-view (FoV) of Centaurus A thanks to the large exposure dedicated by H.E.S.S. to this particularly interesting source. The newly-discovered sources are presented here and in three companion presentations at this conference.Comment: 8 pages, 3 figures, proceeding from the 25th Texas Symposium on Relativistic Astrophysics (Heidelberg, Germany, 2010

    Non-parametric comparison of histogrammed two-dimensional data distributions using the Energy Test

    Get PDF
    When monitoring complex experiments, comparison is often made between regularly acquired histograms of data and reference histograms which represent the ideal state of the equipment. With the larger HEP experiments now ramping up, there is a need for automation of this task since the volume of comparisons could overwhelm human operators. However, the two-dimensional histogram comparison tools available in ROOT have been noted in the past to exhibit shortcomings. We discuss a newer comparison test for two-dimensional histograms, based on the Energy Test of Aslan and Zech, which provides more conclusive discrimination between histograms of data coming from different distributions than methods provided in a recent ROOT release.The Science and Technology Facilities Council, U
    corecore