37 research outputs found

    The Hawthorne Effect: a randomised, controlled trial

    Get PDF
    Background: The 'Hawthorne Effect' may be an important factor affecting the generalisability of clinical research to routine practice, but has been little studied. Hawthorne Effects have been reported in previous clinical trials in dementia but to our knowledge, no attempt has been made to quantify them. Our aim was to compare minimal follow- up to intensive follow-up in participants in a placebo controlled trial of Ginkgo biloba for treating mild-moderate dementia.Methods: Participants in a dementia trial were randomised to intensive follow- up (with comprehensive assessment visits at baseline and two, four and six months post randomisation) or minimal follow-up (with an abbreviated assessment at baseline and a full assessment at six months). Our primary outcomes were cognitive functioning (ADAS-Cog) and participant and carer-rated quality of life (QOL-AD).Results: We recruited 176 participants, mainly through general practices. The main analysis was based on Intention to treat (ITT), with available data. In the ANCOVA model with baseline score as a co- variate, follow-up group had a significant effect on outcome at six months on the ADAS-Cog score (n = 140; mean difference = -2.018; 95% Cl -3.914, -0.121; p = 0.037 favouring the intensive follow-up group), and on participant- rated quality of life score (n = 142; mean difference = -1.382; 95% Cl -2.642, -0.122; p = 0.032 favouring minimal follow-up group). There was no significant difference on carer quality of life.Conclusion: We found that more intensive follow-up of individuals in a placebo-controlled clinical trial of Ginkgo biloba for treating mild-moderate dementia resulted in a better outcome than minimal follow-up, as measured by their cognitive functioning

    Changes in cognitive domains during three years in patients with Alzheimer's disease treated with donepezil

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The objective was to identify separate cognitive domains in the standard assessment tools (MMSE, ADAS-Cog) and analyze the process of decline within domains during three years in Alzheimer's disease (AD) patients with donepezil treatment.</p> <p>Method</p> <p>AD patients (n = 421) were recruited from a clinical multi-centre study program in Sweden. Patients were assessed every six months during three years. All patients received donepezil starting directly after study entry. After dropouts, 158 patients remained for analyses over three years. Data for the other patients were analysed until they dropped out (4 groups based on length in study).</p> <p>Results</p> <p>Factor analyses of all items suggested that there were three intercorrelated factors: a General, a Memory and a Spatial factor for which we constructed corresponding domains. Overall there was a cognitive improvement at six months followed by a linear drop over time for the three domains. Some group and domain differences were identified. Patients who remained longer in the study had better initial performance and a slower deterioration rate. The early dropouts showed no improvement at six months and many dropped out due to side effects. The other groups displayed a performance improvement at six months that was less pronounced in the Memory domain. Before dropping out, deterioration accelerated, particularly in the Spatial domain.</p> <p>Conclusion</p> <p>The course of illness in the three domains was heterogeneous among the patients. We were not able to identify any clinically relevant correlates of this heterogeneity. As an aid we constructed three algorithms corresponding to the cognitive domains, which can be used to characterize patients initially, identify rapid decliners and follow the course of the disease.</p

    Rapid improvement in verbal fluency and aphasia following perispinal etanercept in Alzheimer's disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent clinical studies point to rapid and sustained clinical, cognitive, and behavioral improvement in both Alzheimer's disease and primary progressive aphasia following weekly perispinal administration of etanercept, a TNF-alpha inhibitor that acts by blocking the binding of this cytokine to its receptors. This outcome is concordant with recent basic science studies suggesting that TNF-alpha functions <it>in vivo </it>as a gliotransmitter that regulates synaptic function in the brain. We hypothesized that perispinal etanercept had the potential to improve verbal function in Alzheimer's disease, so we included several standarized measures of verbal ability to evaluate language skills in a clinical trial of perispinal etanercept for Alzheimer's disease.</p> <p>Methods</p> <p>This was a prospective, single-center, open-label, pilot study, in which 12 patients with mild-to-severe Alzheimer's disease were administered etanercept, 25–50 mg, weekly by perispinal administration for six months. Two additional case studies are presented.</p> <p>Results</p> <p>Two-tailed, paired t-tests were conducted comparing baseline performance to 6-month performance on all neuropsychological measures. Test batteries included the California Verbal Learning Test-Second Edition, Adult Version; Logical Memory I and II(WMS-LM-II) from the Wechsler Memory Scale-Abbreviated; the Comprehensive Trail Making Test (TMT); Boston Naming Test; and letter(FAS) and category verbal fluency. All measures revealed a significant effect except for the Boston Naming Test and the TMT-4, with WMS-LM-II being marginally significant at p = .05. The FAS test for letter fluency was most highly significant with a p < 0.0007. In addition, rapid improvement in verbal fluency and aphasia in two patients with dementia, beginning minutes after perispinal etanercept administration, is documented.</p> <p>Conclusion</p> <p>In combination with the previously reported results of perispinal etanercept in Alzheimer's disease and primary progressive aphasia, these results further argue that larger scale studies of this therapeutic intervention, including Phase 3 trials, are warranted in dementias. In addition, these results may provide insight into the basic pathophysiologic mechanisms underlying Alzheimer's disease and related forms of dementia, and suggest the existence of novel, rapidly reversible, TNF-mediated pathophysiologic mechanisms in Alzheimer's disease which are worthy of further investigation.</p

    Reduced hippocampal activation during episodic encoding in middle-aged individuals at genetic risk of Alzheimer's Disease: a cross-sectional study

    Get PDF
    BACKGROUND: The presence of the apolipoprotein E (APOE) ε4 allele is a major risk factor for the development of Alzheimer's disease (AD), and has been associated with metabolic brain changes several years before the onset of typical AD symptoms. Functional MRI (fMRI) is a brain imaging technique that has been used to demonstrate hippocampal activation during measurement of episodic encoding, but the effect of the ε4 allele on hippocampal activation has not been firmly established. METHODS: The present study examined the effects of APOE genotype on brain activation patterns in the medial temporal lobe (MTL) during an episodic encoding task using a well-characterized novel item versus familiar item contrast in cognitively normal, middle-aged (mean = 54 years) individuals who had at least one parent with AD. RESULTS: We found that ε3/4 heterozygotes displayed reduced activation in the hippocampus and MTL compared to ε3/3 homozygotes. There were no significant differences between the groups in age, education or neuropsychological functioning, suggesting that the altered brain activation seen in ε3/4 heterozygotes was not associated with impaired cognitive function. We also found that participants' ability to encode information on a neuropsychological measure of learning was associated with greater activation in the anterior MTL in the ε3/3 homozygotes, but not in the ε3/4 heterozygotes. CONCLUSION: Together with previous studies reporting reduced glucose metabolism and AD-related neuropathology, this study provides convergent validity for the idea that the MTL exhibits functional decline associated with the APOE ε4 allele. Importantly, these changes were detected in the absence of meaningful neuropsychological differences between the groups. A focus of ongoing work in this laboratory is to determine if these findings are predictive of subsequent cognitive decline

    Systematic evaluation of immune regulation and modulation

    Get PDF
    Cancer immunotherapies are showing promising clinical results in a variety of malignancies. Monitoring the immune as well as the tumor response following these therapies has led to significant advancements in the field. Moreover, the identification and assessment of both predictive and prognostic biomarkers has become a key component to advancing these therapies. Thus, it is critical to develop systematic approaches to monitor the immune response and to interpret the data obtained from these assays. In order to address these issues and make recommendations to the field, the Society for Immunotherapy of Cancer reconvened the Immune Biomarkers Task Force. As a part of this Task Force, Working Group 3 (WG3) consisting of multidisciplinary experts from industry, academia, and government focused on the systematic assessment of immune regulation and modulation. In this review, the tumor microenvironment, microbiome, bone marrow, and adoptively transferred T cells will be used as examples to discuss the type and timing of sample collection. In addition, potential types of measurements, assays, and analyses will be discussed for each sample. Specifically, these recommendations will focus on the unique collection and assay requirements for the analysis of various samples as well as the high-throughput assays to evaluate potential biomarkers

    What Do We Know About Neuropsychological Aspects Of Schizophrenia?

    Get PDF
    Application of a neuropsychological perspective to the study of schizophrenia has established a number of important facts about this disorder. Some of the key findings from the existing literature are that, while neurocognitive impairment is present in most, if not all, persons with schizophrenia, there is both substantial interpatient heterogeneity and remarkable within-patient stability of cognitive function over the long-term course of the illness. Such findings have contributed to the firm establishment of neurobiologic models of schizophrenia, and thereby help to reduce the social stigma that was sometimes associated with purely psychogenic models popular during parts of the 20th century. Neuropsychological studies in recent decades have established the primacy of cognitive functions over psychopathologic symptoms as determinants of functional capacity and independence in everyday functioning. Although the cognitive benefits of both conventional and even second generation antipsychotic medications appear marginal at best, recognition of the primacy of cognitive deficits as determinants of functional disability in schizophrenia has catalyzed recent efforts to develop targeted treatments for the cognitive deficits of this disorder. Despite these accomplishments, however, some issues remain to be resolved. Efforts to firmly establish the specific neurocognitive/neuropathologic systems responsible for schizophrenia remain elusive, as do efforts to definitively demonstrate the specific cognitive deficits underlying specific forms of functional impairment. Further progress may be fostered by recent initiatives to integrate neuropsychological studies with experimental neuroscience, perhaps leading to measures of deficits in cognitive processes more clearly associated with specific, identifiable brain systems
    corecore