5 research outputs found

    The effects of prostaglandin E-2 treatment on the secretory function of mare corpus luteum depends on the site of application : an in vivo study

    Get PDF
    Research Areas: Veterinary SciencesWe examined the effect of prostaglandin (PG) E2 on the secretory function of equine corpus luteum (CL), according to the application site: intra-CL injection vs. an intrauterine (intra-U) administration. Moreover, the effect of intra-CL injection vs. intra-U administration of both luteotropic factors: PGE2 and human chorionic gonadotropin (hCG) as a positive control, on CL function was additionally compared. Mares were assigned to the groups (n = 6 per group): (1) an intra-CL saline injection (control); (2) an intra-CL injection of PGE2 (5 mg/ml); (3) an intra-CL injection of hCG (1,500 IU/ml); (4) an intra-U saline administration (control); (5) an intra-U administration of PGE2 (5 mg/5 ml); (6) an intra-U administration of hCG (1,500 IU/5 ml). Progesterone (P4) and PGE2 concentrations were measured in blood plasma samples collected at −2, −1, and 0 (pre-treatment), and at 1, 2, 3, 4, 6, 8, 10, 12, and 24 h after treatments. Moreover, effects of different doses of PGE2 application on the concentration of total PGF2α (PGF2α and its main metabolite 13,14-dihydro-15-keto-prostaglandin F2α– PGFM) was determined. The time point of PGE2, hCG, or saline administration was defined as hour “0” of the experiment. An intra-CL injection of PGE2 increased P4 and PGE2 concentrations between 3 and 4 h or at 3 and 12 h, respectively (p < 0.05). While intra-U administration of PGE2 elevated P4 concentrations between 8 and 24 h, PGE2 was upregulated at 1 h and between 3 and 4 h (p < 0.05). An intra-CL injection of hCG increased P4 concentrations at 1, 6, and 12 h (p < 0.05), while its intra-U administration enhanced P4 and PGE2 concentrations between 1 and 12 h or at 3 h and between 6 and 10 h, respectively (p < 0.05). An application of PGE2, dependently on the dose, supports equine CL function, regardless of the application site, consequently leading to differences in both P4 and PGE2 concentrations in blood plasmainfo:eu-repo/semantics/publishedVersio

    Functional polymorphism of the renalase gene is associated with cardiac hypertrophy in female patients with aortic stenosis

    No full text
    <div><p>Renalase decreases circulating catecholamines concentration and is important in maintaining primary cellular metabolism. Renalase acts through the plasma membrane calcium ATPase 4b in the heart, which affects pressure overload but not exercise induced heart hypertrophy. The aim of this study was to test the association between a functional polymorphism Glu37Asp (rs2296545) of the renalase gene and left ventricular hypertrophy in a large cohort of patients with aortic stenosis. The study group consisted of 657 patients with aortic stenosis referred for aortic valve replacement. Preoperative echocardiographic assessment was performed to obtain cardiac phenotypes. Generalized-linear models were implemented to analyze data using crude or full model adjusted for selected clinical factors. In females, the Asp37 variant of the Glu37Asp polymorphism was associated with higher left ventricular mass (p = 0.0021 and p = 0.055 crude and full model respectively), intraventricular septal thickness (p = 0.0003 and p = 0.0143) and posterior wall thickness (p = 0.0005 and p = 0.0219) all indexed to body surface area, as well as relative wall thickness (p = 0.001 and p = 0.0097). No significant associations were found among the male patients. In conclusion, we have found the association of the renalase Glu37Asp polymorphism with left ventricle hypertrophy in large group of females with aortic stenosis. The Glu37Asp polymorphism causes not only amino-acid substitution in FAD binding domain but may also change binding affinity of the hypoxia- and hypertrophy-related transcription factors and influence renalase gene expression. Our data suggest that renalase might play a role in hypertrophic response to pressure overload, but the exact mechanism requires further investigation.</p></div

    Echocardiographic parameters of left ventricular hypertrophy classified by genotype at rs2296545 and gender.

    No full text
    <p>BSA, body surface area; IVST, intraventricular septal thickness in diastole; LVEDD, left ventricular end-diastolic diameter; LVM, left ventricular mass; PWT, posterior wall thickness in diastole; RWT, relative wall thickness; *P < 0.05, **P < 0.005, ***P < 0.0005; crude model; generalized linear models. (A) Association between rs2296545 and natural logarithm of LVM/BSA in the additive genetic model. (B) Association between rs2296545 and natural logarithm of RWT in the dominant genetic model. (C) Natural logarithm of LVEDD/BSA based on rs2296545 in the additive genetic model. (D) Association between rs2296545 and natural logarithm of (IVST+PWT)/BSA in the additive genetic model.</p
    corecore