91 research outputs found

    Method for detecting surface motions and mapping small terrestrial or planetary surface deformations with synthetic aperture radar

    Get PDF
    A technique based on synthetic aperture radar (SAR) interferometry is used to measure very small (1 cm or less) surface deformations with good resolution (10 m) over large areas (50 km). It can be used for accurate measurements of many geophysical phenomena, including swelling and buckling in fault zones, residual, vertical and lateral displacements from seismic events, and prevolcanic swelling. Two SAR images are made of a scene by two spaced antennas and a difference interferogram of the scene is made. After unwrapping phases of pixels of the difference interferogram, surface motion or deformation changes of the surface are observed. A second interferogram of the same scene is made from a different pair of images, at least one of which is made after some elapsed time. The second interferogram is then compared with the first interferogram to detect changes in line of sight position of pixels. By resolving line of sight observations into their vector components in other sets of interferograms along at least one other direction, lateral motions may be recovered in their entirety. Since in general, the SAR images are made from flight tracks that are separated, it is not possible to distinguish surface changes from the parallax caused by topography. However, a third image may be used to remove the topography and leave only the surface changes

    Subcentimeter-size particle distribution functions in planetary rings from Voyager radio and photopolarimeter occultation data

    Get PDF
    Analysis of measurements of the scattered and direct components of Voyager 1 radio occultation signals at 3.5 and 13 cm wavelengths yield estimates of the distribution functions of supracentimeter-size particles and thickness of relatively broad regions in Saturn's rings. If mearurements of signal amplitude at a shorter wavelength are combined with the previously analyzed data, the shape of the distribution functions characterizing the smaller particles can be constrained. If size distributions of arbitrary form were considered, many solutions are found that are consistent with the three available observations of signal amplitude. The best-fit power law was calculated to the three observations at three wavelengths for several of the embedded Saturn ringlets. Mie scattering theory predicts that the measured phase of the radio occultation signal is highly sensitive to particles ranging from 0.1 to 1.0 wavelengths in size, thus additional constraints on the subcentimeter-size distribution functions for both the Saturn and Uranus rings can in principle be derived from radio phase measurements

    Imaging radar polarimetry from wave synthesis

    Get PDF
    It was shown that it is possible to measure the complete scattering matrix of an object using data acquired on a single aircraft pass, and can combine the signals later in the data processor to generate radar images corresponding to any desired combination of transmit and receive polarization. Various scattering models predict different dependence on polarization state of received power from an object. The imaging polarimeter permits determination of this dependence, which is called the polarization signature, of each point in a radar image. Comparison of the theoretical predictions and observational data yield identification of possible scattering mechanisms for each area of interest. It was found that backscatter from the ocean is highly polarized and well-modeled by Bragg scattering, while scattering from trees in a city park possesses a considerable unpolarized component. Urban regions exhibit the characteristics expected from dihedral corner reflectors and their polarization signatures are quite different from the one-bounce Bragg model

    High quality InSAR data linked to seasonal change in hydraulic head for an agricultural area in the San Luis Valley, Colorado

    Get PDF
    In the San Luis Valley (SLV), Colorado legislation passed in 2004 requires that hydraulic head levels in the confined aquifer system stay within the range experienced in the years 1978–2000. While some measurements of hydraulic head exist, greater spatial and temporal sampling would be very valuable in understanding the behavior of the system. Interferometric synthetic aperture radar (InSAR) data provide fine spatial resolution measurements of Earth surface deformation, which can be related to hydraulic head change in the confined aquifer system. However, change in cm-scale crop structure with time leads to signal decorrelation, resulting in low quality data. Here we apply small baseline subset (SBAS) analysis to InSAR data collected from 1992 to 2001. We are able to show high levels of correlation, denoting high quality data, in areas between the center pivot irrigation circles, where the lack of water results in little surface vegetation. At three well locations we see a seasonal variation in the InSAR data that mimics the hydraulic head data. We use measured values of the elastic skeletal storage coefficient to estimate hydraulic head from the InSAR data. In general the magnitude of estimated and measured head agree to within the calculated error. However, the errors are unacceptably large due to both errors in the InSAR data and uncertainty in the measured value of the elastic skeletal storage coefficient. We conclude that InSAR is capturing the seasonal head variation, but that further research is required to obtain accurate hydraulic head estimates from the InSAR deformation measurements

    Global drainage patterns and the origins of topographic relief on Earth, Mars, and Titan

    Get PDF
    Rivers have eroded the topography of Mars, Titan, and Earth, creating diverse landscapes. However, the dominant processes that generated topography on Titan (and to some extent on early Mars) are not well known. We analyzed drainage patterns on all three bodies and found that large drainages, which record interactions between deformation and erosional modification, conform much better to long-wavelength topography on Titan and Mars than on Earth. We use a numerical landscape evolution model to demonstrate that short-wavelength deformation causes drainage directions to diverge from long-wavelength topography, as observed on Earth. We attribute the observed differences to ancient long-wavelength topography on Mars, recent or ongoing generation of long-wavelength relief on Titan, and the creation of short-wavelength relief by plate tectonics on Earth

    The TOPSAR interferometric radar topographic mapping instrument

    Get PDF
    The NASA DC-8 AIRSAR instrument was augmented with a pair of C-band antennas displaced across track to form an interferometer sensitive to topographic variations of the Earth's surface. The antennas were developed by the Italian consortium Co.Ri.S.T.A., under contract to the Italian Space Agency (ASI), while the AIRSAR instrument and modifications to it supporting TOPSAR were sponsored by NASA. A new data processor was developed at JPL for producing the topographic maps, and a second processor was developed at Co.Ri.S.T.A. All the results presented below were processed at JPL. During the 1991 DC-8 flight campaign, data were acquired over several sites in the United States and Europe, and topographic maps were produced from several of these flight lines. Analysis of the results indicate that statistical errors are in the 2-3 m range for flat terrain and in the 4-5 m range for mountainous areas

    Data volume reduction for imaging radar polarimetry

    Get PDF
    Two alternative methods are disclosed for digital reduction of synthetic aperture multipolarized radar data using scattering matrices, or using Stokes matrices, of four consecutive along-track pixels to produce averaged data for generating a synthetic polarization image

    Airborne Radar Interferometric Repeat-Pass Processing

    Get PDF
    Earth science research often requires crustal deformation measurements at a variety of time scales, from seconds to decades. Although satellites have been used for repeat-track interferometric (RTI) synthetic-aperture-radar (SAR) mapping for close to 20 years, RTI is much more difficult to implement from an airborne platform owing to the irregular trajectory of the aircraft compared with microwave imaging radar wavelengths. Two basic requirements for robust airborne repeat-pass radar interferometry include the ability to fly the platform to a desired trajectory within a narrow tube and the ability to have the radar beam pointed in a desired direction to a fraction of a beam width. Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) is equipped with a precision auto pilot developed by NASA Dryden that allows the platform, a Gulfstream III, to nominally fly within a 5 m diameter tube and with an electronically scanned antenna to position the radar beam to a fraction of a beam width based on INU (inertial navigation unit) attitude angle measurements

    UAVSAR: A new NASA airborne SAR system for science and technology research

    Get PDF
    NASA’s Jet Propulsion Laboratory is currently building a reconfigurable, polarimetric L-band synthetic aperture radar (SAR), specifically designed to acquire airborne repeat track SAR data for differential interferometric measurements. Differential interferometry can provide key deformation measurements, important for studies of earthquakes, volcanoes and other dynamically changing phenomena. Using precision real-time GPS and a sensor controlled flight management system, the system will be able to fly predefined paths with great precision. The expected performance of the flight control system will constrain the flight path to be within a 10 m diameter tube about the desired flight track. The radar will be designed to be operable on a UAV (Unpiloted Arial Vehicle) but will initially be demonstrated on a on a NASA Gulfstream III. The radar will be fully polarimetric, with a range bandwidth of 80 MHz (2 m range resolution), and will support a 16 km range swath. The antenna will be electronically steered along track to assure that the antenna beam can be directed independently, regardless of the wind direction and speed. Other features supported by the antenna include elevation monopulse and pulse-to-pulse re-steering capabilities that will enable some novel modes of operation. The system will nominally operate at 45,000 ft (13800 m). The program began as an Instrument Incubator Project (IIP) funded by NASA Earth Science and Technology Office (ESTO)
    corecore