21 research outputs found

    Cultivation With Powdered Meteorite (NWA 1172) as the Substrate Enhances Low-Temperature Preservation of the Extreme Thermoacidophile Metallosphaera sedula

    Get PDF
    Recent studies have uncovered a vast number of thermophilic species in icy environments, permanently cold ocean sediments, cold sea waters, and cool soils. The survival of thermophiles in psychrobiotic habitats requires thorough investigation of the physiological and molecular mechanisms behind their natural cryopreservation. Such investigations are mainly impeded due to a restricted cultivation of thermophiles at low temperatures under the laboratory conditions. Artificial culture media used under the laboratory conditions usually fail to support cultivation of thermophiles at low-temperature range. In this study we cultivated the extreme thermoacidophilic archaeonMetallosphaera sedulawith the preliminary powdered and sterilized multimetallic extraterrestrial mineral material (the meteorite NWA 1172) under a low temperature regime in laboratory conditions. Our data indicate thatM. sedulawithstands cold stress and can be maintained at low temperatures, when supplemented with the meteorite NWA 1172 as the sole energy source. Cultivation with the meteorite NWA 1172 opens up new, previously unknown psychrotolerant characteristics ofM. sedula, emphasizing that culture conditions (i.e., the "nutritional environment") may affect the microbial survival potential in stress related situations. These observations facilitate further investigation of strategies and underlying molecular mechanisms of the survival of thermophilic species in permanently cold habitats

    O govoru mržnje

    Get PDF
    European SulfoSYS-project [SysMo P–N-01-09-23] and grant [9P23000 and P25369] by the Austrian Research fund (to C.S.) and by grant [BB/K000314/1] from the Biotechnology and Biological Sciences Research Council (to M.F.W.). Funding for open access charge: Austrian Science Fund.The recently discovered clustered regularly interspaced short palindromic repeat (CRISPR)-mediated virus defense represents an adaptive immune system in many bacteria and archaea. Small CRISPR RNAs cause cleavage of complementary invading nucleic acids in conjunction with an associated protein or a protein complex. Here, we show CRISPR-mediated cleavage of mRNA from an invading virus in the hyperthermophilic archaeon Sulfolobus solfataricus. More than 40% of the targeted mRNA could be cleaved, as demonstrated by quantitative polymerase chain reaction. Cleavage of the mRNA was visualized by northern analyses and cleavage sites were mapped. In vitro, the same substrates were cleaved by the purified CRISPR-associated CMR complex from Sulfolobus solfataricus. The in vivo system was also re-programmed to knock down mRNA of a selected chromosomal gene (β-galactosidase) using an artificial miniCRISPR locus. With a single complementary spacer, ∼50% reduction of the targeted mRNA and of corresponding intracellular protein activity was achieved. Our results demonstrate in vivo cleavage of mRNA in a prokaryote mediated by small RNAs (i.e. analogous to RNA interference in eukaryotes) and the re-programming of the system to silence specific genes of interest.Publisher PDFPeer reviewe

    Exploring the microbial biotransformation of extraterrestrial material on nanometer scale

    No full text
    Exploration of microbial-meteorite redox interactions highlights the possibility of bioprocessing of extraterrestrial metal resources and reveals specific microbial fingerprints left on extraterrestrial material. In the present study, we provide our observations on a microbial-meteorite nanoscale interface of the metal respiring thermoacidophile Metallosphaera sedula. M. sedula colonizes the stony meteorite Northwest Africa 1172 (NWA 1172; an H5 ordinary chondrite) and releases free soluble metals, with Ni ions as the most solubilized. We show the redox route of Ni ions, originating from the metallic Ni2+ of the meteorite grains and leading to released soluble Ni2+. Nanoscale resolution ultrastructural studies of meteorite grown M. sedula coupled to electron energy loss spectroscopy (EELS) points to the redox processing of Fe-bearing meteorite material. Our investigations validate the ability of M. sedula to perform the biotransformation of meteorite minerals, unravel microbial fingerprints left on meteorite material, and provide the next step towards an understanding of meteorite biogeochemistry. Our findings will serve in defining mineralogical and morphological criteria for the identification of metal-containing microfossils

    Efficient CRISPR-Mediated Post-transcriptional Gene Silencing in a Hyperthermophilic Archaeon Using Multiplexed crRNA Expression

    No full text
    CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-mediated RNA degradation is catalyzed by a type III system in the hyperthermophilic archaeon Sulfolobus solfataricus. Earlier work demonstrated that the system can be engineered to target specifically mRNA of an endogenous host reporter gene, namely the β-galactosidase in S. solfataricus. Here, we investigated the effect of single and multiple spacers targeting the mRNA of a second reporter gene, α-amylase, at the same, and at different, locations respectively, using a minimal CRISPR (miniCR) locus supplied on a viral shuttle vector. The use of increasing numbers of spacers reduced mRNA levels at progressively higher levels, with three crRNAs (CRISPR RNAs) leading to ∼ 70–80% reduction, and five spacers resulting in an α-amylase gene knockdown of > 90% measured on both mRNA and protein activity levels. Our results indicate that this technology can be used to increase or modulate gene knockdown for efficient post-transcriptional gene silencing in hyperthermophilic archaea, and potentially also in other organisms
    corecore