14 research outputs found
Multi-Phase Multi-Component Equilibrium Flash Calculations for CompFlow Bio using Modified Volume-Translated Peng- Robinson Equation of State
Numerical modelling of fluid flow and transport in reservoir engineering problems is a challenging task, given variability and uncertainty in the physical properties of rock, the complexities of multi-fluid interaction at elevated pressure and temperature and limited computational resources. Nonetheless, this thesis seeks to provide a basis for expansion of our modeling capabilities in the context of hydrocarbon mixtures at equilibrium conditions. We briefly describe the numerical simulator CompFlow Bio and propose a package, with the solid thermodynamics background required for dealing with highly non-ideal mixture behavior, to amend this simulator.
Herein we present the governing equations of phase equilibrium and key expressions for calculating equilibrium mole fractions and phase properties over a broad range of pressure and temperature. We employed the traditional flash calculations model used in the petroleum industry and redesigned its procedure in order to accommodate the special design of CompFlow Bio and verify this modified model against a well-known commercial simulator results. In this proposed model, we use a modified Peng-Robinson equation of state improved by volume-translations for performing equilibrium flash calculations. Then, we describe three different case studies developed in order to investigate the accuracy of the proposed model, as well as describe the complexity of hydrocarbon mixture behavior at reservoir conditions.
Our findings indicate that: our model’s performance is in close agreement with the commercial simulator software. Furthermore, these findings highlight various aspects of hydrocarbon behavior at high pressure and temperature, such as: decrease in non-aqueous phase mass density with increase in pressure while a gaseous phase is disappearing; a growing gas phase can dry out of the aqueous phase until it disappears; injection of carbon dioxide for enhanced oil recovery does not guarantee swelling of the non-aqueous phase and gas phase mass density increase with the injection of carbon dioxide, depending on the light hydrocarbon content of the gaseous phase
Effect of salinity stress on germination and early seedling growth of different Safflower (Carthamus tinctorius L.) genotypes
Elevated soil saline levels resulting from natural geological, hydrological and pedological process, and from using salty water for irrigation may inhibit seed germination and seedling establishment of safflower, the prospective oil-seed crops. A germination study on safflower seeds and a short-term toxicity experiment with different concentrations of NaCl (control, 50, 100 and 200 mM) on safflower seedlings were conducted. Percent germination over control decreased significantly with increasing concentrations of NaCl. There were genotypic differences among the test genotypes in response to salt stress exposure. The performance of the G5 (Gilla) was the best among the genotypes. Germination of G5 was not inhibited at all up to 100 mM NaCl treatment. Root tolerance index (RTI) and relative shoot height (RSH) for safflower seedlings decreased with increasing concentrations of NaCl. In general, G5 (Gilla) has more tolerance to NaCl than the other studied genotypes
Assessment of different anther culture approaches to produce doubled haploids in cucumber (Cucumis sativus L.)
[EN] Cucumber is one of the most important vegetable crops worldwide, which makes it a good candidate to produce doubled haploid (DH) lines to accelerate plant breeding. Traditionally, these approaches involved induction of gynogenesis or parthenogenesis with irradiated pollen, which carries some disadvantages compared to androgenesis. Despite this, studies on anther/microspore cultures in cucumber are surprisingly scarce. Furthermore, most of them failed to unambiguously demonstrate the haploid origin of the individuals obtained. In this work we focused on anther cultures using two cucumber genotypes, different previously published protocols for anther culture, different in vitro culture variants to make it more efficient, and most importantly, a combination of flow cytometry and microsatellite molecular markers to evaluate the real androgenic potential and the impact of anther wall tissue proliferation. We developed a method to produce DH plants involving a bud pretreatment at 4 C, a 35 C treatment to anthers, culture with BAP and 2,4-D, and induction of callus morphogenesis by an additional 35 C treatment and sequential culture first in liquid medium in darkness and second in solid medium with light. We also found that factors such as genotype, proliferation of anther wall tissues, orientation of anthers in the culture medium and growth regulator composition of the initial anther culture medium have a remarkable impact. Our rate of chromosome doubling (81%) was high enough to
exclude additional chromosome doubling steps. Together, our results present androgenesis as an improvable but yet more convenient alternative to traditional gynogenesis and parthenogenesis-based approaches.Thanks are due to all the whole staff of the Cell Biology Group for helping and training AA during his stay in the group. This work was supported by Grant AGL2017- 88135-R to JMSS from Spanish Ministerio de Economı´a y Competitividad (MINECO) jointly funded by FEDER.Asadi, A.; Zebarjadi, A.; Abdollahi, MR.; SeguĂ-Simarro, JM. (2018). Assessment of different anther culture approaches to produce doubled haploids in cucumber (Cucumis sativus L.). Euphytica. 214(216):1-17. https://doi.org/10.1007/s10681-018-2297-xS117214216Abdollahi MR, Najafi S, Sarikhani H, Moosavi SS (2016) Induction and development of anther-derived gametic embryos in cucumber (Cucumis sativus L.) by optimizing the macronutrient and agar concentrations in culture medium. Turk J Biol 40(3):571–579Ashok Kumar HG, Murthy HN (2004) Effect of sugars and amino acids on androgenesis of Cucumis sativus. Plant Cell, Tissue Organ Cult 78(3):201–208. https://doi.org/10.1023/b:ticu.0000025637.56693.68Bai B, Su YH, Yuan J, Zhang XS (2013) Induction of somatic embryos in arabidopsis requires local YUCCA expression mediated by the down-regulation of ethylene biosynthesis. Mol Plant 6(4):1247–1260. https://doi.org/10.1093/mp/sss154Claveria E, Garcia-Mas J, Dolcet-Sanjuan R (2005) Optimization of cucumber doubled haploid line production using in vitro rescue of in vivo induced parthenogenic embryos. J Am Soc Hortic Sci 130(4):555–560Corral-MartĂnez P, Nuez F, SeguĂ-Simarro JM (2011) Genetic, quantitative and microscopic evidence for fusion of haploid nuclei and growth of somatic calli in cultured ms1035 tomato anthers. Euphytica 178(2):215–228. https://doi.org/10.1007/s10681-010-0303-zDanin-Poleg Y, Reis N, Tzuri G, Katzir N (2001) Development and characterization of microsatellite markers in Cucumis. Theor Appl Genet 102(1):61–72. https://doi.org/10.1007/s001220051618Dong Y-Q, Zhao W-X, Li X-H, Liu X-C, Gao N-N, Huang J-H, Wang W-Y, Xu X-L, Tang Z-H (2016) Androgenesis, gynogenesis, and parthenogenesis haploids in cucurbit species. Plant Cell Rep. https://doi.org/10.1007/s00299-016-2018-7FAOSTAT (2018) http://faostat.fao.org. Accessed July 2018Ficcadenti N, Sestili S, Annibali S, Di Marco M, Schiavi M (1999) In vitro gynogenesis to induce haploid plants in melon Cucumis melo L. Genet Breed 53:255–257GaĹ‚Ä…zka J, Niemirowicz-Szczytt K (2013) Review of research on haploid production in cucumber and other cucurbits. Folia Hortic. https://doi.org/10.2478/fhort-2013-0008Hamidvand Y, Abdollahi MR, Chaichi M, Moosavi SS (2013) The effect of plant growth regulators on callogenesis and gametic embryogenesis from anther culture of cucumber (Cucumis sativus L.). Int J Agric Crop Sci 5(10):1089Kurtar ES, Balkaya A, Kandemir D (2016) Evaluation of haploidization efficiency in winter squash (Cucurbita maxima Duch.) and pumpkin (Cucurbita moschata Duch.) through anther culture. Plant Cell, Tissue Organ Cult 127(2):497–511. https://doi.org/10.1007/s11240-016-1074-6Lotfi M, Alan AR, Henning MJ, Jahn MM, Earle ED (2003) Production of haploid and doubled haploid plants of melon (Cucumis melo L.) for use in breeding for multiple virus resistance. Plant Cell Rep 21(11):1121–1128Metwally EI, Moustafa SA, El-Sawy BI, Shalaby TA (1998) Haploid plantlets derived by anther culture of Cucurbita pepo. Plant Cell, Tissue Organ Cult 52(3):171–176. https://doi.org/10.1023/a:1005908326663Mohamed M, Refaei E (2004) Enhanced haploids regeneration in anther culture of summer squash (Curcurbita pepo L.). Cucurbit Genet Coop Rep 27:57–60Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–479Parra-Vega V, Renau-Morata B, Sifres A, SeguĂ-Simarro JM (2013) Stress treatments and in vitro culture conditions influence microspore embryogenesis and growth of callus from anther walls of sweet pepper (Capsicum annuum L.). Plant Cell, Tissue Organ Cult 112(3):353–360. https://doi.org/10.1007/s11240-012-0242-6Rakha M, Metwally E, Moustafa S, Etman A, Dewir Y (2012) Evaluation of regenerated strains from six Cucurbita interspecific hybrids obtained through anther and ovule in vitro cultures. Aust J Crop Sci 6(1):23–30Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81(24):8014–8018. https://doi.org/10.1073/pnas.81.24.8014Sauton A, Dumas de Vaulx R (1987) Obtention de plantes haploides chez melon (Cucumis melo L.) par gynogenese indute par du pollen irraidiĂ©. Agronomie 7:141–148SeguĂ-Simarro JM (2016) Androgenesis in solanaceae. In: GermanĂ MA, Lambardi M (eds) In vitro embryogenesis. Methods in molecular biology, vol 1359. Springer, New York, pp 209–244. https://doi.org/10.1007/978-1-4939-3061-6_9SeguĂ-Simarro JM, Nuez F (2006) Androgenesis induction from tomato anther cultures: callus characterization. Acta Hort 725:855–861SeguĂ-Simarro JM, Nuez F (2007) Embryogenesis induction, callogenesis, and plant regeneration by in vitro culture of tomato isolated microspores and whole anthers. J Exp Bot 58(5):1119–1132SeguĂ-Simarro JM, Nuez F (2008) Pathways to doubled haploidy: chromosome doubling during androgenesis. Cytogenet Genome Res 120(3–4):358–369. https://doi.org/10.1159/000121085Shalaby TA (2006) Embryogenesis and plantlets regeneration from anther culture of squash plants (Cucurbita pepo L.) as affected by different genotypes. J Agric Res Tanta Univ 32(1):173–183Song H, Lou QF, Luo XD, Wolukau JN, Diao WP, Qian CT, Chen JF (2007) Regeneration of doubled haploid plants by androgenesis of cucumber (Cucumis sativus L.). Plant Cell, Tissue Organ Cult 90(3):245–254. https://doi.org/10.1007/s11240-007-9263-ySteward FC, Mapes MO, Mears K (1958) Growth and organized development of cultured cells. II. Organization in cultures grown from freely suspended cells. Am J Bot 45(10):705–708Su YH, Zhao XY, Liu YB, Zhang CL, O’Neill SD, Zhang XS (2009) Auxin-induced WUS expression is essential for embryonic stem cell renewal during somatic embryogenesis in arabidopsis. Plant J 59(3):448–460. https://doi.org/10.1111/j.1365-313X.2009.03880.xSuprunova T, Shmykova N (2008) In vitro induction of haploid plants in unpollinated ovules, anther and microspore culture of Cucumis sativus. In: Cucurbitaceae 2008: proceedings of the IXth Eucarpia meeting on genetics and breeding of cucurbitaceae, pp 371–374Xie M, Qin L-Y, Pan J-S, He H-L, Wu A-Z, Cai R (2005) Flower morphogenesis and microspore development versus anther culture of cucumber. Acta Bot Boreal-Occid Sin 25(6):1096Zhan Y, Chen J-F, Malik AA (2009) Embryoid induction and plant regeneration of cucumber (Cucumis sativus L.) through microspore culture. Acta Hort Sin 36(2):221–22
An Experimental Study of CO2-low Salinity Water Alternating Gas Injection in Sandstone Heavy Oil Reservoirs
Several studies have shown that oil recovery significantly increased by low salinity water flooding (LSWF) in sandstones. However, mechanism of oil recovery improvement is still controversial. CO2 that develops buffer in presence of water is expected as a deterrent factor in LSWF efficiency based on mechanism of IFT reduction due to pH uprising. No bright evidence in literature supports this idea. Here, a set of core floods including a pair of CO2 WAG and a pair of water injection tests are conducted and, the efficiency of LSWF and high salinity water flooding (HSWF) were compared for each pair. HSWF was followed by LSWF in tertiary mode. Results showed that not only CO2 does not deteriorate LSWF recovery efficiency, but also improves recovery. Since CO2-low salinity WAG showed best performance among types by constant pore volume injected. Positive results in both secondary and tertiary modes with Kaolinite free samples used here showed that Kaolinite release is not the critical phenomenon in LSWF brisk performance. Also different pressure behaviour of CO2 WAG processes in comparison with reported behaviour of LSWF proves that LSWF performance may not depend on how pressure changes through flooding
Subcutaneous Emphysema as an Ominous Side Effect in COVID-19 Patients under Mechanical Ventilation, Report of 7 Cases
Today, due to the pandemic of novel coronavirus 2019 (COVID-19), extensive information over all parts of the world is spreading rapidly. We present seven cases of COVID-19 patients with pneumothorax as one of the ominous side effects of the disease and a strong predictor of death which is a new challenge in controlling the transmission and distribution of the disease