1,095 research outputs found

    Parity nonconservation effect in the resonance elastic electron scattering on heavy He-like ions

    Full text link
    We investigate the parity nonconservation effect in the elastic scattering of polarized electrons on heavy He-like ions, being initially in the ground state. The enhancement of the parity violation is achieved by tuning the energy of the incident electron in resonance with quasidegenerate doubly-excited states of the corresponding Li-like ion. We consider two possible scenarios. In the first one we assume that the polarization of the scattered electron is measured, while in the second one it is not detected.Comment: 13 pages, 3 figures, 2 table

    Relativistic mask method for electron momentum distributions after ionization of hydrogen-like ions in strong laser fields

    Full text link
    Wavefunction-splitting or mask method, widely used in the non-relativistic calculations of the photoelectron angular distributions, is extended to the relativistic domain within the dipole approximation. Since the closed-form expressions for the relativistic Volkov states are not available within the dipole approximation, we build such states numerically solving a single second-order differential equation. We calculate the photoelectron energy spectra and angular distributions for highly charged ions under different ionization regimes with both the direct and the relativistic mask methods. We show that the relativistic mask method works very well and reproduces the electron energy and angular distributions calculated by the direct method in the energy range where both methods can be used. On the other hand, the relativistic mask method can be applied for longer laser pulses and/or higher photoelectron energies where the direct method may have difficulties

    Parity nonconservation effect in the dielectronic recombination of polarized electrons with heavy He-like ions

    Full text link
    We investigate the parity nonconservation (PNC) effect in the dielectronic recombination (DR) of a polarized electron with a heavy He-like ion into doubly-excited ((1s2p1/2)0nκ)1/2((1s 2p_{1/2})_{0} n{\kappa})_{1/2} and ((1s2s)0nκ)1/2\left(\left(1s 2s\right)_{0} n{\kappa}\right)_{1/2} states of Li-like ion. We determine the nuclear charge number ZZ for which these opposite-parity levels are near to cross and, therefore, the PNC effect will be significantly enhanced. Calculations are performed for quantum numbers n≥4n \geq 4 and κ=±1\kappa = \pm 1.Comment: 12 pages, 1 figur

    Complex-scaled ab initio QED approach to autoionizing states

    Full text link
    Ab initio method based on a complex-scaling approach and aimed at a rigorous QED description of autoionizing states is worked out. The autoionizing-state binding energies are treated nonperturbatively in αZ\alpha Z and include all the many-electron QED contributions up to the second order. The higher-order electron correlation, nuclear recoil, and nuclear polarization effects are taken into account as well. The developed formalism is demonstrated on the LLLL resonances in heliumlike argon and uranium. The most accurate theoretical predictions for the binding energies are obtained.Comment: 6 pages, 3 figure

    Application of the JJ-matrix Method to Faddeev-Merkuriev equation: beyond pseudostates

    Get PDF
    A version of the JJ-matrix method for solving numerically the three-body Faddeev-Merkuriev differential equations is proposed. This version allows to take into account the full spectrum of the two-body Coulomb subsystem. As a result, a discrete analog of the Lippmann-Schwinger equation is obtained which allows to interpret correctly the three-body wave function in two-body domains. The scheme is applied to calculations of the fully resolved absolute differential cross sections for the He(e,2e)(e,2e)He+^+ and He(e,3e)(e,3e)He++^{++} reactions at small energy and momentum transfers. The results are in good agreement with the experiment both in shape and in absolute value.Comment: 22 pages, 7 figure

    Nucleon-nucleon interaction in the JJ-matrix inverse scattering approach and few-nucleon systems

    Full text link
    The nucleon-nucleon interaction is constructed by means of the JJ-matrix version of inverse scattering theory. Ambiguities of the interaction are eliminated by postulating tridiagonal and quasi-tridiagonal forms of the potential matrix in the oscillator basis in uncoupled and coupled waves, respectively. The obtained interaction is very accurate in reproducing the NNNN scattering data and deuteron properties. The interaction is used in the no-core shell model calculations of 3^3H and 4^4He nuclei. The resulting binding energies of 3^3H and 4^4He are very close to experimental values.Comment: Text is revised, new figures and references adde
    • …
    corecore