8 research outputs found

    Alternative practices of achieving anaesthesia for dental procedures: a review

    Get PDF
    Managing pain and anxiety in patients has always been an essential part of dentistry. To prevent pain, dentists administer local anaesthesia (LA) via a needle injection. Unfortunately, anxiety and fear that arise prior to and/or during injection remains a barrier for many children and adults from receiving dental treatment. There is a constant search for techniques to alleviate the invasive and painful nature of the needle injection. In recent years, researchers have developed alternative methods which enable dental anaesthesia to be less invasive and more patient-friendly. The aim of this review is to highlight the procedures and devices available which may replace the conventional needle-administered local anaesthesia. The most known alternative methods in providing anaesthesia in dentistry are: topical anaesthesia, electronic dental anaesthesia, jet-injectors, iontophoresis, and computerized control local anaesthesia delivery systems. Even though these procedures are well accepted by patients to date, it is the authors' opinion that the effectiveness practicality of such techniques in general dentistry is not without limitations

    Outcome of Root Canal Treatments Using a New Calcium Silicate Root Canal Sealer: A Non-Randomized Clinical Trial

    No full text
    Background: The aim of this study was to compare the success rate of root canal treatments undertaken using a calcium silicate root canal sealer in combination with a single cone with non-calcium silicate cement and warm vertical condensation. Methods: 150 necrotic or pulpitic teeth were treated. (REC: 08/H0804/79). Following standardized root canal chemo-debridement. The canals were obturated using warm vertical condensation of gutta-percha and epoxy-based sealer (AH plus) or a calcium silicate sealer (BioRootTM RCS) with a single cone technique. Follow-up assessment was conducted at 12 months using Cone Beam Computed Tomography (CBCT). Results: At 1-year recall, 104 teeth were assessed (51 AH plus, 53 BioRootTM RCS). The success rate using loose criteria for the CBCT images and PA radiographs was respectively 80% and 89% in the AH plus/warm vertical condensation group, 84% and 90% in the BioRootTM RCS/single cone group. There was no statistically significant difference between the two groups (Fisher exact test p value 0.6099 for the CBCT images). Conclusion: Within the limitations of this non-randomized trial, a calcium silicate cement in combination with single cone resulted in a similar proportion of successful cases compared to warm vertical condensation and epoxy-based sealer.</jats:p

    Micro-computed tomography evaluation of microleakage of Class II composite restorations: An in vitro study

    Get PDF
    Objective: The aim of this study is to investigate the microleakage attained with three resin‑based material used to restore deep Class II cavities. A null hypothesis was chosen: there is no difference in microleakage among the tested materials. Materials and Methods: A total of 30 Class II cavities were prepared in freshly extracted molars with the proximal mesial and distal margins located, respectively, 1.5 mm apically and 1.5 mm coronally to the cementum‑enamel junction. Restorations were completed using a three‑step enamel‑dentin adhesive system “Etch and Rinse,” margins were relocated using a micro‑hybrid, preheated, or flowable composite and restorations were then completed using a conventional composite. All samples were coated with nail varnish with the exception of an area along the margins and apex was sealed using epoxide cement and then thermocycled (30‑s dwell time, 5°C/55°C, 1000 cycles). A 50% ammoniac AgNO3 solution was used as tracer according to Tay’s protocol. The microleakage analysis was performed using a microtomography system Sky‑scan 1072 (SKYSCAN, Kartuizersweg 3B 2550, Konitch, Belgium). Results: The mean microleakage of all the tested materials showed greater leakage in the cementum margins; flowable composite exhibit greater leakage among the groups. Significant differences (P < 5%) within groups in both enamel and dentin margins were present. None of the tested materials eliminated marginal microleakage. Preheated composite showed significantly lesser microleakage. Conclusion: Tested materials showed statistical differences in microleakage; thus, the null hypothesis has been rejected. Within the limitations of the present experimental procedure, it can be concluded that flowable resin composite should be avoided at the dentin/cementum margi

    A new electronic read-out for the YAPPET scanner

    Get PDF
    A small animal PET-SPECT scanner (YAPPET) prototype was built at the Physics Department of the Ferrara University and is presently being used at the Nuclear Medicine Department for radiopharmaceutical studies on rats. The first YAPPET prototype shows very good performances, but needs some improvements before it can be fully used for intensive radiopharmaceutical research. The main problem of the actual prototype is its heavy electronics, based on NIM and CAMAC standard modules. For this reason a new, compact read-out electronics was developed and tested. The results of a first series of tests made on the first prototype will be presented in the paper
    corecore