66 research outputs found

    Features of frictional treatment of the composite NiCrBSi-Cr3 C2 laser clad coating

    Full text link
    The authors conducted a comparative analysis of the effectiveness of frictional treatment with a sliding indenter of a NiCrBSi coating and a composite coating formed by laser cladding of a powder mixture of 85 wt.% NiCrBSi and 15 wt.% Cr3 C2 . The criteria were intensive strain hardening, favorable compressive stresses, and low surface roughness. Frictional treatment with an indenter made of cubic boron nitride at a load of 350 N provides less intense deformational hardening of the NiCrBSi-Cr3 C2 coating (microhardness growth from 900 to 940 HV 0.025) than the NiCrBSi coating (from 570 to 850 HV 0.025). This is due to the significantly higher initial hardness of the composite coating, because its structure, in addition to the phases characteristic of the NiCrBSi coating, contains large primary Cr3 C2 carbides, which did not dissolve during cladding, as well as elongated Cr23 C6 carbides, precipitated during cooling from a solid solution supersaturated with chromium as a result of the partial dissolution of Cr3 C2 carbides during cladding. Frictional treatment also results in a lower level of compressive residual stresses (−250 MPa) on the composite coating surface than on the NiCrBSi coating surface (−390 MPa). In contrast to frictional treatment of the NiCrBSi coating, when a smoothed surface with a nano-roughness is formed (Ra = 60 nm), frictional treatment of the composite coating forms a surface with a higher roughness (Ra = 310 nm) due to the creation on the surface of supporting “island frame” of large Cr3 C2 chromium carbides protruding 2 – 5 μm. © 2020, Institute for Metals Superplasticity Problems of Russian Academy of Sciences. All rights reserved.The work was performed with the financial support of the Grant from the President of the Russian Federation for young scientists MK-391.2019.8 and at the expense of funds making up the income from the trust management of the target capital for the development of UrFU, formed with the participation of UMMC-Holding Corp, as well as within the state order for IES UB RAS (AAAA-A18-118020790147-4) and IMP UB RAS (AAAA-A18-118020190116-6 and АААА-А19-119070490049-8). The experimental research was performed on the equipment of the Plastometriya Collective Use Center of IES UB RAS

    Desulfuribacillus alkaliarsenatis gen. nov. sp. nov., a deep-lineage, obligately anaerobic, dissimilatory sulfur and arsenate-reducing, haloalkaliphilic representative of the order Bacillales from soda lakes

    Get PDF
    An anaerobic enrichment culture inoculated with a sample of sediments from soda lakes of the Kulunda Steppe with elemental sulfur as electron acceptor and formate as electron donor at pH 10 and moderate salinity inoculated with sediments from soda lakes in Kulunda Steppe (Altai, Russia) resulted in the domination of a Gram-positive, spore-forming bacterium strain AHT28. The isolate is an obligate anaerobe capable of respiratory growth using elemental sulfur, thiosulfate (incomplete reduction) and arsenate as electron acceptor with H2, formate, pyruvate and lactate as electron donor. Growth was possible within a pH range from 9 to 10.5 (optimum at pH 10) and a salt concentration at pH 10 from 0.2 to 2 M total Na+ (optimum at 0.6 M). According to the phylogenetic analysis, strain AHT28 represents a deep independent lineage within the order Bacillales with a maximum of 90 % 16S rRNA gene similarity to its closest cultured representatives. On the basis of its distinct phenotype and phylogeny, the novel haloalkaliphilic anaerobe is suggested as a new genus and species, Desulfuribacillus alkaliarsenatis (type strain AHT28T = DSM24608T = UNIQEM U855T)

    Microbial diversity and biogeochemical cycling in soda lakes

    Get PDF
    Soda lakes contain high concentrations of sodium carbonates resulting in a stable elevated pH, which provide a unique habitat to a rich diversity of haloalkaliphilic bacteria and archaea. Both cultivation-dependent and -independent methods have aided the identification of key processes and genes in the microbially mediated carbon, nitrogen, and sulfur biogeochemical cycles in soda lakes. In order to survive in this extreme environment, haloalkaliphiles have developed various bioenergetic and structural adaptations to maintain pH homeostasis and intracellular osmotic pressure. The cultivation of a handful of strains has led to the isolation of a number of extremozymes, which allow the cell to perform enzymatic reactions at these extreme conditions. These enzymes potentially contribute to biotechnological applications. In addition, microbial species active in the sulfur cycle can be used for sulfur remediation purposes. Future research should combine both innovative culture methods and state-of-the-art ‘meta-omic’ techniques to gain a comprehensive understanding of the microbes that flourish in these extreme environments and the processes they mediate. Coupling the biogeochemical C, N, and S cycles and identifying where each process takes place on a spatial and temporal scale could unravel the interspecies relationships and thereby reveal more about the ecosystem dynamics of these enigmatic extreme environments

    On Geoneutrinos

    No full text
    Experimental data on geoneutrinos allow to admit that masses of U, Th and K in the Earth can be up to mU = 1.7 · 1017 kg, mTh = 6.7 · 1017 kg and mK/mEarth ~ 2%. These values correspond to intrinsic Earth heat flux in ~300 TW. The most part of this flux goes up in rift zones as a heated gases. Argo Project results and the measurements of the Moon intrinsic heat flux support the existence of such a big flux. So large of U, Th, K abundances were predicted by Adjusted Hydridic Earth model

    The Conjugates of Phenolic Acids in Lichens of the Order Lecanorales

    No full text
    Lichens are symbiotic associations of a fungus (usually an ascomycete) and a photobiont, which may be an alga and/or a cyanobacterium. Lichens dominate on about 6–8% of land surface, mainly in the habitats with severe climatic conditions. Lichenized fungi are among the pioneer vegetation on bare rock or soil. Mat-forming species contribute substantially to the soil cover in tundras and high mountain elevations. Lichens are rich in water-soluble compounds which can be leached-out the lichen thalli with atmospheric depositions. We have recently described the occurrence of water-soluble phenolics in lichens (Zagoskina et al 2013). These compounds can play important role in the ecosystem functioning and primary soil formation (weathering, humification). The aim of this work was to study qualitative composition of water-soluble phenolics in the lichen species widespread in the soil cover of tundra zone. The air-dried thalli of Alectoria ochroleuca, Cetraria islandica, C.nigricans, C.nivalis, Cladonia arbuscula and C.stellaris were homogenized to powder and used for the study. Lichens were collected in Khibiny mountains, Kola Peninsula in August 2013. Phenolic compounds were extracted by distilled water (1h, 30C) and analyzed by TLC before and after the acid hydrolysis. It was found that all the lichens under the study contained the conjugates of phenol carboxylic acids. We have identified that non-phenolic part in some of these conjugates was represented by sugars and amino acids. The TLC of the hydrolizates of water extracts revealed occurrence of p-oxybenzoic acid in all of the species studied. The lichens Cetraria islandica, С.nigricans and Cladonia stellaris contained also vanillic acid. These phenolic acids are widespread in plant kingdom and are known as products of lignin decomposition in higher plants. The physiological role of water-soluble phenolics in lichens as well as their environmental role are need to be understood in future studies.</p
    corecore