27 research outputs found

    Paracrine signaling by glial cell-derived triiodothyronine activates neuronal gene expression in the rodent brain and human cells

    Get PDF
    Hypothyroidism in humans is characterized by severe neurological consequences that are often irreversible, highlighting the critical role of thyroid hormone (TH) in the brain. Despite this, not much is known about the signaling pathways that control TH action in the brain. What is known is that the prohormone thyroxine (T4) is converted to the active hormone triiodothyronine (T3) by type 2 deiodinase (D2) and that this occurs in astrocytes, while TH receptors and type 3 deiodinase (D3), which inactivates T3, are found in adjacent neurons. Here, we modeled TH action in the brain using an in vitro coculture system of D2-expressing H4 human glioma cells and D3-expressing SK-N-AS human neuroblastoma cells. We found that glial cell D2 activity resulted in increased T3 production, which acted in a paracrine fashion to induce T3-responsive genes, including ectonucleotide pyrophosphatase/phosphodiesterase 2 (ENPP2), in the cocultured neurons. D3 activity in the neurons modulated these effects. Furthermore, this paracrine pathway was regulated by signals such as hypoxia, hedgehog signaling, and LPS-induced inflammation, as evidenced both in the in vitro coculture system and in in vivo rat models of brain ischemia and mouse models of inflammation. This study therefore presents what we believe to be the first direct evidence for a paracrine loop linking glial D2 activity to TH receptors in neurons, thereby identifying deiodinases as potential control points for the regulation of TH signaling in the brain during health and disease.NIHFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Hungarian Scientific Research FundHungarian Academy of SciencesUniv Miami, Miller Sch Med, Div Endocrinol Diabet & Metab, Miami, FL 33136 USAUniversidade Federal de São Paulo, Mol Endocrinol Lab, Div Endocrinol, Dept Med, São Paulo, BrazilHungarian Acad Sci, Inst Expt Med, Lab Endocrine Neurobiol, Budapest, HungaryBrigham & Womens Hosp, Thyroid Sect, Div Endocrinol Diabet & Hypertens, Boston, MA 02115 USATufts Med Ctr, Div Endocrinol Diabet & Metab, Dept Med, Tupper Res Inst, Boston, MA USATufts Univ, Sch Med, Dept Neurosci, Boston, MA 02111 USAUniversidade Federal de São Paulo, Mol Endocrinol Lab, Div Endocrinol, Dept Med, São Paulo, BrazilNIH: DK77086NIH: DK37021FAPESP: 05/55825-8FAPESP: 05/55826-4Hungarian Scientific Research Fund: OTKA K81226Web of Scienc

    A Novel Pathway Regulates Thyroid Hormone Availability in Rat and Human Hypothalamic Neurosecretory Neurons

    Get PDF
    Hypothalamic neurosecretory systems are fundamental regulatory circuits influenced by thyroid hormone. Monocarboxylate-transporter-8 (MCT8)-mediated uptake of thyroid hormone followed by type 3 deiodinase (D3)-catalyzed inactivation represent limiting regulatory factors of neuronal T3 availability. In the present study we addressed the localization and subcellular distribution of D3 and MCT8 in neurosecretory neurons and addressed D3 function in their axons. Intense D3-immunoreactivity was observed in axon varicosities in the external zone of the rat median eminence and the neurohaemal zone of the human infundibulum containing axon terminals of hypophysiotropic parvocellular neurons. Immuno-electronmicroscopy localized D3 to dense-core vesicles in hypophysiotropic axon varicosities. N-STORM-superresolution-microscopy detected the active center containing C-terminus of D3 at the outer surface of these organelles. Double-labeling immunofluorescent confocal microscopy revealed that D3 is present in the majority of GnRH, CRH and GHRH axons but only in a minority of TRH axons, while absent from somatostatin-containing neurons. Bimolecular-Fluorescence-Complementation identified D3 homodimers, a prerequisite for D3 activity, in processes of GT1-7 cells. Furthermore, T3-inducible D3 catalytic activity was detected in the rat median eminence. Triple-labeling immunofluorescence and immuno-electronmicroscopy revealed the presence of MCT8 on the surface of the vast majority of all types of hypophysiotropic terminals. The presence of MCT8 was also demonstrated on the axon terminals in the neurohaemal zone of the human infundibulum. The unexpected role of hypophysiotropic axons in fine-tuned regulation of T3 availability in these cells via MCT8-mediated transport and D3-catalyzed inactivation may represent a novel regulatory core mechanism for metabolism, growth, stress and reproduction in rodents and humans

    Small Heterodimer Partner Deletion Prevents Hepatic Steatosis and When Combined With Farnesoid X Receptor Loss Protects Against Type 2 Diabetes in Mice

    No full text
    Nuclear receptors farnesoid X receptor (FXR) and small heterodimer partner (SHP) are important regulators of bile acid, lipid, and glucose homeostasis. Here, we show that global Fxr(-/-) Shp(-/-) double knockout (DKO) mice are refractory to weight gain, glucose intolerance, and hepatic steatosis when challenged with high-fat diet. DKO mice display an inherently increased capacity to burn fat and suppress de novo hepatic lipid synthesis. Moreover, DKO mice were also very active and that correlated well with the observed increase in phosphoenolpyruvate carboxykinase expression, type IA fibers, and mitochondrial function in skeletal muscle. Mechanistically, we demonstrate that liver-specific Shp deletion protects against fatty liver development by suppressing expression of peroxisome proliferator-activated receptor gamma 2 and lipid-droplet protein fatspecific protein 27 beta. Conclusion: These data suggest that Fxr and Shp inactivation may be beneficial to combat dietinduced obesity and uncover that hepatic SHP is necessary to promote fatty liver disease

    Ubiquitination-Induced Conformational Change within the Deiodinase Dimer Is a Switch Regulating Enzyme Activity▿

    No full text
    Ubiquitination is a critical posttranslational regulator of protein stability and/or subcellular localization. Here we show that ubiquitination can also regulate proteins by transiently inactivating enzymatic function through conformational change in a dimeric enzyme, which can be reversed upon deubiquitination. Our model system is the thyroid hormone-activating type 2 deiodinase (D2), an endoplasmic reticulum-resident type 1 integral membrane enzyme. D2 exists as a homodimer maintained by interacting surfaces at its transmembrane and globular cytosolic domains. The D2 dimer associates with the Hedgehog-inducible ubiquitin ligase WSB-1, the ubiquitin conjugase UBC-7, and VDU-1, a D2-specific deubiquitinase. Upon binding of T4, its natural substrate, D2 is ubiquitinated, which inactivates the enzyme by interfering with D2's globular interacting surfaces that are critical for dimerization and catalytic activity. This state of transient inactivity and change in dimer conformation persists until deubiquitination. The continuous association of D2 with this regulatory protein complex supports rapid cycles of deiodination, conjugation to ubiquitin, and enzyme reactivation by deubiquitination, allowing tight control of thyroid hormone action
    corecore