32 research outputs found

    Altered Trabecular Bone Structure and Delayed Cartilage Degeneration in the Knees of Collagen VI Null Mice

    Get PDF
    Mutation or loss of collagen VI has been linked to a variety of musculoskeletal abnormalities, particularly muscular dystrophies, tissue ossification and/or fibrosis, and hip osteoarthritis. However, the role of collagen VI in bone and cartilage structure and function in the knee is unknown. In this study, we examined the role of collagen VI in the morphology and physical properties of bone and cartilage in the knee joint of Col6a1−/− mice by micro-computed tomography (microCT), histology, atomic force microscopy (AFM), and scanning microphotolysis (SCAMP). Col6a1−/− mice showed significant differences in trabecular bone structure, with lower bone volume, connectivity density, trabecular number, and trabecular thickness but higher structure model index and trabecular separation compared to Col6a1+/+ mice. Subchondral bone thickness and mineral content increased significantly with age in Col6a1+/+ mice, but not in Col6a1−/− mice. Col6a1−/− mice had lower cartilage degradation scores, but developed early, severe osteophytes compared to Col6a1+/+mice. In both groups, cartilage roughness increased with age, but neither the frictional coefficient nor compressive modulus of the cartilage changed with age or genotype, as measured by AFM. Cartilage diffusivity, measured via SCAMP, varied minimally with age or genotype. The absence of type VI collagen has profound effects on knee joint structure and morphometry, yet minimal influences on the physical properties of the cartilage. Together with previous studies showing accelerated hip osteoarthritis in Col6a1−/− mice, these findings suggest different roles for collagen VI at different sites in the body, consistent with clinical data

    Initial wet web strength of paper

    Full text link

    Orienting lignocellulosic fibers and particles by means of a magnetic field

    No full text

    Doxorubicin-loaded protease-activated near-infrared fluorescent polymeric nanoparticles for imaging and therapy of cancer

    No full text
    Tugba Yildiz,1 Renpeng Gu,2 Stefan Zauscher,2 Tania Betancourt1,3 1Materials Science, Engineering, and Commercialization Program, Texas State University, San Marcos, TX, 2Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 3Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, USA Introduction: Despite significant progress in the field of oncology, cancer remains one of the leading causes of death. Chemotherapy is one of the most common treatment options for cancer patients but is well known to result in off-target toxicity. Theranostic nanomedicines that integrate diagnostic and therapeutic functions within an all-in-one platform can increase tumor selectivity for more effective chemotherapy and aid in diagnosis and monitoring of therapeutic responses. Material and methods: In this work, theranostic nanoparticles were synthesized with commonly used biocompatible and biodegradable polymers and used as cancer contrast and therapeutic agents for optical imaging and treatment of breast cancer. These core–shell nanoparticles were prepared by nanoprecipitation of blends of the biodegradable and biocompatible amphiphilic copolymers poly(lactic-co-glycolic acid)-b-poly-L-lysine and poly(lactic acid)-b-poly(ethylene glycol). Poly-L-lysine in the first copolymer was covalently decorated with near-infrared fluorescent Alexa Fluor 750 molecules. Results: The spherical nanoparticles had an average size of 60–80 nm. The chemotherapeutic drug doxorubicin was encapsulated in the core of nanoparticles at a loading of 3% (w:w) and controllably released over a period of 30 days. A 33-fold increase in near-infrared fluorescence, mediated by protease-mediated cleavage of the Alexa Fluor 750-labeled poly-L-lysine on the surface of the nanoparticles, was observed upon interaction with the model protease trypsin. The cytocompatibility of drug-free nanoparticles and growth inhibition of drug-loaded nanoparticles on MDA-MB-231 breast cancer cells were investigated with a luminescence cell-viability assay. Drug-free nanoparticles were found to cause minimal toxicity, even at high concentrations (0.2–2,000 µg/mL), while doxorubicin-loaded nanoparticles significantly reduced cell viability at drug concentrations >10 µM. Finally, the interaction of the nanoparticles with breast cancer cells was studied utilizing fluorescence microscopy, demonstrating the potential of the nanoparticles to act as near-infrared fluorescence optical imaging agents and drug-delivery carriers. Conclusion: Doxorubicin-loaded, enzymatically activatable nanoparticles of less than 100 nm were prepared successfully by nanoprecipitation of copolymer blends. These nanoparticles were found to be suitable as controlled drug delivery systems and contrast agents for imaging of cancer cells. Keywords: nanomedicine, theranostics, drug delivery, fluorescence imaging, enzymatic activation, nanoprecipitation, block copolymers, PLGA, PLA, PEG, poly-L-lysine, nanoparticle

    Quantitative Biological Surface Science: Challenges and Recent Advances

    No full text
    Biological surface science is a broad, interdisciplinary subfield of surface science, where properties and processes at biological and synthetic surfaces and interfaces are investigated, and where biofunctional surfaces are fabricated. The need to study and to understand biological surfaces and interfaces in liquid environments provides sizable challenges M, as well as fascinating opportunities. Here, we report on recent progress in biological surface E. science that was described within the program assembled by the Biomaterial Interface Division of the Science and Technology of Materials, Interfaces and Processes (www.avs.org) during their 55th International Symposium and Exhibition held in Boston, October 19-24, 2008. The selected examples show that the rapid progress in nanoscience and nanotechnology, hand-in-hand with theory and simulation, provides increasingly sophisticated methods and tools to unravel the mechanisms and details of complex processes at biological surfaces and in-depth understanding of biomolecular surface interactions

    Thermodynamic Analysis of the Uptake of a Protein in a Spherical Polyelectrolyte Brush

    Get PDF
    A thermodynamic study of the adsorption of Human Serum Albumin HSA onto spherical polyelectrolyte brushes SPBs by isothermal titration calorimetry ITC is presented. The SPBs are composed of a solid polystyrene core bearing long chains of poly acrylic acid . ITC measurements done at different temperatures and ionic strengths lead to a full set of thermodynamicbinding constants together with the enthalpies and entropies of binding. The adsorption of HSA onto SPBs is described with a two amp; 8208;step model. The free energy of binding amp; 916;Gb depends only weakly on temperature because of a marked compensation of enthalpy by entropy. Studies of the adsorbed HSA by Fourier transform infrared spectroscopy FT amp; 8208;IR demonstrate no significant disturbance in the secondary structure of the protein. The quantitative analysis demonstrates that counterion release is the major driving force for adsorption in a process where proteins become multivalent counterions of the polyelectrolyte chains upon adsorption. A comparison with the analysis of other sets of data related to the binding of HSA to polyelectrolytes demonstrates that the cancellation of enthalpy and entropy is a general phenomenon that always accompanies the binding of proteins to polyelectrolytes dominated by counterion releas
    corecore