691 research outputs found

    The importance of piN → K Lambda process for the pole structure of the P11 partial wave T-matrix in the coupled channel pion-nucleon partial wave analysis

    Full text link
    The pole structure of the P11 pion-nucleon partial wave is examined with the emphasis on the 1700 MeV energy domain. The mechanism of eliminating continuum ambiguities in pion-nucleon partial wave analyses by using the coupled channel formalism, presented elsewhere for the piN -> etaN channel, is applied for the piN -> K Lambda channel, with the aim to clarify the issue whether physical reality requires none (VPI/GWU), one (KH80, CMB, Kent, Pittsburgh/ANL, Giessen), or possibly two (Zagreb) poles of the partial wave T-matrix in the 1700 MeV range. The role of second inelastic channel for resolving the dilemma is demonstrated. It is pointed out that the experiments for the piN -> K Lambda and piN -> K Sigma channel, extremely important for the 1700 MeV range, are old and inconclusive so an urgent need for remeasuring that channel is stressed.Comment: 4 pages, 5 figures; talk held at NSTAR 2005 in Tallahassee, F

    Nucleon resonances and processes involving strange particles

    Full text link
    An existing single resonance model with S11, P11 and P13 Breit-Wiegner resonances in the s-channel has been re-applied to the old pi N --> K Lambda data. It has been shown that the standard set of resonant parameters fails to reproduce the shape of the differential cross section. The resonance parameter determination has been repeated retaining the most recent knowledge about the nucleon resonances. The extracted set of parameters has confirmed the need for the strong contribution of a P11(1710) resonance. The need for any significant contribution of the P13 resonance has been eliminated. Assuming that the Baker. et al data set\cite{Bak78} is a most reliable one, the P11 resonance can not but be quite narrow. It emerges as a good candidate for the non-strange counter partner of the established pentaquark anti-decuplet.Comment: 5 pages, 2 figures, contribution to the NSTAR 2004 conference in Grenobl

    Model-independent resonance parameter extraction using the trace of K and T matrices

    Get PDF
    A model-independent method for the determination of Breit-Wigner resonance parameters is presented. The method is based on eliminating the dependence on the choice of channel basis by analyzing the trace of the K and T matrices in the coupled-channel formalism, rather than individual matrix elements of the multichannel scattering matrix.Comment: 6 pages, 16 figure

    MICRO X-RAY COMPUTED TOMOGRAPHY OF ADHESIVE BONDS IN WOOD

    Get PDF
    Micro X-ray computed tomography (XCT) is an emerging technology that has found many applications in biology and the study of materials. Synchrotron-based micro computed tomography has been adopted for the study of adhesive bonding in wood. This paper reviews recent developments of an integrated project that uses micro XCT to assist with modeling of adhesive bonds and to assess the role of cell wall penetration on moisture resistance.  The research includes study of: anatomical features of several commercially important wood species, penetration of three adhesive types into wood, moisture effects on bonding, and mechanical performance of bonds during XCT scanning

    Optimal signal states for quantum detectors

    Full text link
    Quantum detectors provide information about quantum systems by establishing correlations between certain properties of those systems and a set of macroscopically distinct states of the corresponding measurement devices. A natural question of fundamental significance is how much information a quantum detector can extract from the quantum system it is applied to. In the present paper we address this question within a precise framework: given a quantum detector implementing a specific generalized quantum measurement, what is the optimal performance achievable with it for a concrete information readout task, and what is the optimal way to encode information in the quantum system in order to achieve this performance? We consider some of the most common information transmission tasks - the Bayes cost problem (of which minimal error discrimination is a special case), unambiguous message discrimination, and the maximal mutual information. We provide general solutions to the Bayesian and unambiguous discrimination problems. We also show that the maximal mutual information has an interpretation of a capacity of the measurement, and derive various properties that it satisfies, including its relation to the accessible information of an ensemble of states, and its form in the case of a group-covariant measurement. We illustrate our results with the example of a noisy two-level symmetric informationally complete measurement, for whose capacity we give analytical proofs of optimality. The framework presented here provides a natural way to characterize generalized quantum measurements in terms of their information readout capabilities.Comment: 13 pages, 1 figure, example section extende
    • …
    corecore