398 research outputs found
Perioperative Strategien zur Regulierung des Sympathikotonus
Zusammenfassung: Obwohl für verschiedene therapeutische Konzepte zur Verminderung der kardialen perioperativen Morbidität und Mortalität zunehmend Evidenz vorliegt, bleibt die tatsächliche Umsetzung solcher Konzepte im klinischen Alltag oft aus. Zwar ist einem großen Teil der klinisch tätigen Ärzte die wachsende Literatur bekannt; dieses Wissen wird aber nur in einem Teil der Fälle angewendet, selbst wenn allgemein akzeptierte Indikationen bestehen. Die vorliegende Übersichtsarbeit hat deshalb zum Ziel, die Gründe für die mangelnde Umsetzung aufzuzeigen und nochmals die wesentlichen Grundlagen sowie die klinische Bedeutung einzelner Strategien einschließlich des α2-Agonismus, der β-adrenergen Blockade und der Regionalanästhesien zusammenzufassen. Dies insbesondere im Hinblick auf die klinische Anwendung dieser Konzepte in einem allgemeinanästhesiologischen Umfeld. Zudem wird ein Ausblick in die auf "gene profiling" basierende individualisierte Pharmakotherapie der perioperativen Medizin von morgen gegebe
Recommended from our members
Suppression of the 1 MHz beam current modulation in the LEDA/CRITS proton source
Earlier operation of a microwave proton source exhibited an approximate 1-MHz modulation in the beam current. This oscillation could cause instabilities at higher energies in the linac, as the low-level RF control for linac operation rolls off at 200 kHz. Tests on a dummy load show the modulation is created by the magnetron itself: at a typical power level required for the source operation (680W), the 1-MHz sideband level was as high as {minus}4 dB from carrier. Since the magnetron exhibited better behavior at higher levels, a RF power attenuator is inserted to force the magnetron to run at a 50% higher power level for the same final power in the load. This attenuator is made of two antennas plunged in the waveguide and connected to dummy loads by a coaxial line. As the antenna are separated by a quarter of the guided wavelength, mismatching effects approximately cancel each other. The antenna length is experimentally adjusted to obtain the {minus}1.8 dB attenuation required. Magnetron operation at the higher power level gives a beam current spectrum free of the 1-MHz modulation, showing the coherent beam noise is not generated by plasma chamber phenomena
Ischemic postconditioning protects remodeled myocardium via the PI3K-PKB/Akt reperfusion injury salvage kinase pathway
OBJECTIVE: We tested whether ischemic postconditioning (IPostC) is protective in remodeled myocardium. METHODS: Post-myocardial infarct (MI)-remodeled hearts after permanent coronary artery ligation and one kidney one clip (1K1C) hypertensive hearts of male Wistar rats were exposed to 40 min of ischemia followed by 90 min of reperfusion. IPostC was induced by six cycles of 10 s reperfusion interspersed by 10 s of no-flow ischemia. Activation of reperfusion injury salvage kinases was measured using Western blotting and in vitro kinase activity assays. RESULTS: IPostC prevented myocardial damage in both MI-remodeled and 1K1C hearts, as measured by decreased infarct size and lactate dehydrogenase release, and improved function. The reduction in infarct size and the recovery of left ventricular contractility achieved by IPostC was less in 1K1C hearts, but was unchanged in MI-remodeled hearts when compared to healthy hearts. In contrast, the recovery of inotropy was unaffected in 1K1C hearts, but was less in MI-remodeled hearts. Inhibition of the phosphatidylinositol 3-kinase (PI3K) pathway with LY294002 abolished the protective effects of IPostC on both disease models and healthy hearts. Western blot analysis in conjunction with in vitro kinase activity assays identified protein kinase B (PKB)/Akt but not p42/p44 extracellular-signal regulated kinase 1/2 (ERK1/2) as the predominant kinase in IPostC-mediated cardioprotection in remodeled hearts. IPostC increased phosphorylation of the PKB/Akt downstream targets eNOS, GSK3beta, and p70S6K in remodeled hearts. CONCLUSION: Our results offer evidence that IPostC mediates cardioprotection in the remodeled rat myocardium primarily via activation of the PI3K-PKB/Akt reperfusion injury salvage kinase pathwa
Recommended from our members
Operation of a microwave proton source in pulsed mode
Initial beam operation of the cw radio-frequency-quadrupole (RFQ) built for the Low Energy Demonstration Accelerator (LEDA) project requires the injection into the RFQ of a 75-keV, pulsed, H{sup +} beam with a rise and fall time less than 10 microseconds and a pulse width from 0.1 to 1 millisecond at a repetition rate up to 10 Hz. The ion source for the accelerator is a microwave proton source driven by a 2.45-GHz magnetron. Pulsed beam for the RFQ is accomplished by modulation of the magnetron tube current. The magnetron provides microwave pulses to the ion source, and a medium-bandwidth, extraction power supply produces the H{sup +} ion beam using a four-electrode extractor. A similar ion source with a three-element extractor operating at 50 kV has also been tested with this magnetron modulator. The authors report the results of modulating the ion-source microwave power and extracting a pulsed proton beam using both a triode and a tetrode extractor
Explicit solution of the quantum three-body Calogero-Sutherland model
Quantum integrable systems generalizing Calogero-Sutherland systems were
introduced by Olshanetsky and Perelomov (1977). Recently, it was proved that
for systems with trigonometric potential, the series in the product of two wave
functions is a deformation of the Clebsch-Gordan series. This yields recursion
relations for the wave functions of those systems. In this note, this approach
is used to compute the explicit expressions for the three-body
Calogero-Sutherland wave functions, which are the Jack polynomials. We
conjecture that similar results are also valid for the more general
two-parameters deformation introduced by Macdonald.Comment: 10 page
Effects of exercise intensity on gut microbiome composition and function in people with type 2 diabetes
This is the final version. Available from Taylor and Francis Group via the DOI in this record. Exercise is positively associated with higher microbial diversity, but there is limited information on exercise intensity's effect on gut microbiome composition and function in clinical populations. This study examines whether different intensities of exercise exert differential effects on gut microbiome composition and function in low active people with type 2 diabetes. This is a sub-study of the Exercise for Type 2 Diabetes Study, a single centre, prospective, randomised controlled trial. Participants (n = 12) completed 8-weeks of combined aerobic and resistance moderate intensity continuous training (C-MICT) or combined aerobic and resistance high-intensity interval training (C-HIIT). Faecal samples were collected before and after intervention to measure gut microbiome composition and metabolic pathways (metagenome shotgun sequencing) and short-chain fatty acids. Post-exercise α-diversity was different between groups as was the relative abundance of specific taxa was (p < .05). Post-exercise relative abundance of Bifidobacterium, A. municiphila, and butyrate-producers Lachnospira eligens, Enterococcus spp., and Clostridium Cluster IV were higher at lower exercise intensity. Other butyrate-producers (from Eryspelothrichales and Oscillospirales), and methane producer Methanobrevibacter smithii were higher at higher exercise intensity. Pyruvate metabolism (ko00620),COG “Cell wall membrane envelope biogenesis” and “Unknown function” pathways were significantly different between groups and higher in C-MICT post-exercise. Differential abundance analysis on KO showed higher expression of Two-component system in C-HIIT. Transcription factors and “unknown metabolism” related pathways decreased in both groups. There were no significant between group changes in faecal short chain fatty acids. Exercise intensity had a distinct effect on gut microbiome abundance and metabolic function, without impacting short-chain fatty acid output.Biotechnology & Biological Sciences Research Council (BBSRC)Biotechnology & Biological Sciences Research Council (BBSRC)Centre for Research in Exercise and Physical Activity (The University of Queensland
Recommended from our members
Doppler-Shift Proton Fraction Measurement on a CW Proton Injector
A spectrometer/Optical Multi-channel Analyzer has been used to measure the proton fraction of the cw proton injector developed for the Accelerator Production of Tritium (APT) and the Low Energy Demonstration Accelerator (LEDA) at Los Alamos. This technique, pioneered by the Lawrence Berkeley National Laboratory (LBNL), was subsequently adopted by the international fusion community as the standard for determining the extracted ion fractions of neutral beam injectors. Proton fractions up to 95 {+-} 3% have been measured on the LEDA injector. These values are in good agreement with results obtained by magnetically sweeping the ion beam, collimated by a slit, across a Faraday cup. Since the velocity distribution of each beam species is measured, it also can be used to determine beam divergence. While divergence has not yet been ascertained due to the wide slit widths in use, non-Gaussian distributions have been observed during operation above the design-matched perveance. An additional feature is that the presence of extracted water ions can be observed. During ion source conditioning at 75 kV, an extracted water fraction > 30% was briefly observed
Recommended from our members
Comparison of beam simulations with measurements for a 1.25-MeV, CW RFQ
The Low-Energy Demonstration Accelerator (LEDA) injector is tested using the Chalk River Injector Test Stand (CRITS) radio-frequency quadrupole (RFQ) as a diagnostic instrument. Fifty-keV, dc proton beams are injected into the 1.25-MeV, CW RFQ and transported to a beamstop. Computer-simulation-code predictions of the expected beam performance are compared with the measured beam currents and beam profiles. Good agreement is obtained between the measurements and the simulations at the 75-mA design RFQ output current
Novel Human Parechovirus 3 Diversity, Recombination, and Clinical Impact Across 7 Years: An Australian Story
BACKGROUND
A novel human parechovirus 3 Australian recombinant (HPeV3-AR) strain emerged in 2013 and coincided with biennial outbreaks of sepsis-like illnesses in infants. We evaluated the molecular evolution of the HPeV3-AR strain and its association with severe HPeV infections.
METHODS
HPeV3-positive samples collected from hospitalized infants aged 5-252 days in 2 Australian states (2013-2020) and from a community-based birth cohort (2010-2014) were sequenced. Coding regions were used to conduct phylogenetic and evolutionary analyses. A recombinant-specific polymerase chain reaction was designed and utilized to screen all clinical and community HPeV3-positive samples.
RESULTS
Complete coding regions of 54 cases were obtained, which showed the HPeV3-AR strain progressively evolving, particularly in the 3' end of the nonstructural genes. The HPeV3-AR strain was not detected in the community birth cohort until the initial outbreak in late 2013. High-throughput screening showed that most (>75%) hospitalized HPeV3 cases involved the AR strain in the first 3 clinical outbreaks, with declining prevalence in the 2019-2020 season. The AR strain was not statistically associated with increased clinical severity among hospitalized infants.
CONCLUSIONS
HPeV3-AR was the dominant strain during the study period. Increased hospital admissions may have been from a temporary fitness advantage and/or increased virulence
- …