32 research outputs found

    Identification of REST-Regulated Molecular Circuitries and Targets Exploitable for hGSCs-Targeted Therapies

    Get PDF
    Glioblastoma (GBM) represents the most frequent and lethal cancer affecting the central nervous system for which no cure is currently available. The presence of Glioma Stem Cells (GSCs) has been proposed to be at the root of therapeutic failures due to their intrinsic abilities of escaping common treatments and relapsing the pathology. Thus, advances in therapeutic options may derive from the manipulation of mechanisms controlling the GSCs self-renewal, survival and functions. RE1-Silencing Transcription Factor (REST) is a master repressor of neuronal developmental programme in non-neuronal lineages, recently described as a main actor in the maintenance of the GSCs’ tumorigenic competence as its knockdown strongly impairs GSCs stemness both in vitro and in vivo. However, REST is critical for restraining neuronal cellular identity in various tissues, so that a targeted therapy to this transcriptional repressor is likely to present numerous side effects. Here, by taking advantage of a Tet-on system for the manipulation of REST expression in both human GSCs and Neural Stem Cell lines (hNSCs), we performed a transcriptomic profiling analysis in order to identify novel tumour-specific REST-regulated functions and molecular targets. Our analyses confirmed the previously reported roles of REST in neural tissues and enlightened novel REST functions in hGSCs, including the regulation of alternative hGSCs identity/state. Finally, analysis of hGSC-specific REST-regulated genes in GBM patients’ dataset revealed an inverse correlation with glioma aggressiveness, thus establishing a hGSC REST score that might provide a useful prognostic tool

    The activation of M2 muscarinic receptor inhibits cell growth and survival in human glioblastoma cancer stem cells

    No full text
    The involvement of muscarinic receptors in cancer has been reported. Recently we have demonstrated that the activation of M2 muscarinic receptors, through arecaidine propargyl ester, arrests cell proliferation and induces apoptosis in primary and established glioblastoma cell lines. Considering the inability of conventional drugs to completely counteract the growth of glioblastoma cancer stem cells (GSCs), we have investigated the effect produced by arecaidine on GSC growth and survival. The expression of M2 receptors has been analyzed in GSC cell lines derived from human biopsies. Based on the M2 receptor expression levels, we have selected two gliolastoma cell lines (GB7 and GB8). In both cell lines the treatment with arecaidine decreased GCS cell growth. GB7 cells exhibited a time- and dose-dependent decrease of cell proliferation. Moreover arecaidine caused a reduced cell survival in particular in GB8 cell line. These effects appear to be mediated by M2 receptor activation as suggested by pharmacological experiments performed in the presence of M1 and M3 preferring antagonists (pirenzepine and 4-DAMP respectively) and M2/M4 antagonist methoctramine. M2 receptor silencing by siRNA has further confirmed that the inhibition of cell growth arecaidine-induced was mediated by the M2 receptor activation. These results suggest that the M2 receptors may represent a new interesting therapeutic tool to counteract glioblastoma cancer stem cell growth and survival

    Epsins Regulate Mouse Embryonic Stem Cell Exit from Pluripotency and Neural Commitment by Controlling Notch Activation

    No full text
    Epsins are part of the internalization machinery pivotal to control clathrin-mediated endocytosis. Here, we report that epsin family members are expressed in mouse embryonic stem cells (mESCs) and that epsin1/2 knockdown alters both mESC exits from pluripotency and their differentiation. Furthermore, we show that epsin1/2 knockdown compromises the correct polarization and division of mESC-derived neural progenitors and their conversion into expandable radial glia-like neural stem cells. Finally, we provide evidence that Notch signaling is impaired following epsin1/2 knockdown and that experimental restoration of Notch signaling rescues the epsin-mediated phenotypes. We conclude that epsins contribute to control mESC exit from pluripotency and allow their neural differentiation by appropriate modulation of Notch signaling

    Epsins Regulate Mouse Embryonic Stem Cell Exit from Pluripotency and Neural Commitment by Controlling Notch Activation

    No full text
    Epsins are part of the internalization machinery pivotal to control clathrin-mediated endocytosis. Here, we report that epsin family members are expressed in mouse embryonic stem cells (mESCs) and that epsin1/2 knockdown alters both mESC exits from pluripotency and their differentiation. Furthermore, we show that epsin1/2 knockdown compromises the correct polarization and division of mESC-derived neural progenitors and their conversion into expandable radial glia-like neural stem cells. Finally, we provide evidence that Notch signaling is impaired following epsin1/2 knockdown and that experimental restoration of Notch signaling rescues the epsin-mediated phenotypes. We conclude that epsins contribute to control mESC exit from pluripotency and allow their neural differentiation by appropriate modulation of Notch signaling

    Establishment of induced pluripotent stem cell (iPSC) line from an 8-year old female patient with ischemic Moyamoya disease

    Get PDF
    AbstractPeripheral blood mononuclear cells (PBMCs) were collected from an 8-year old female patient affected by ischemic Moyamoya disease (MMD). Patient's PBMCs were reprogrammed using Sendai virus particles delivering the four Yamanaka factors. The footprint free hiPSC line expressed the major pluripotency markers and exhibited a normal karyotype. Cells were competent to give rise to progeny of differentiated cells belonging to the 3 germ layers. This hiPSC line represents a good tool to in vitro model MMD in order to shed light on the cellular and molecular mechanisms responsible for the occurrence of this syndrome

    CAG repeat expansion in the Huntington's disease gene shapes linear and circular RNAs biogenesis.

    No full text
    Alternative splicing (AS) appears to be altered in Huntington's disease (HD), but its significance for early, pre-symptomatic disease stages has not been inspected. Here, taking advantage of Htt CAG knock-in mouse in vitro and in vivo models, we demonstrate a correlation between Htt CAG repeat length and increased aberrant linear AS, specifically affecting neural progenitors and, in vivo, the striatum prior to overt behavioral phenotypes stages. Remarkably, a significant proportion (36%) of the aberrantly spliced isoforms are not-functional and meant to non-sense mediated decay (NMD). The expanded Htt CAG repeats further reflect on a previously neglected, global impairment of back-splicing, leading to decreased circular RNAs production in neural progenitors. Integrative transcriptomic analyses unveil a network of transcriptionally altered micro-RNAs and RNA-binding proteins (Celf, hnRNPs, Ptbp, Srsf, Upf1, Ythd2) which might influence the AS machinery, primarily in neural cells. We suggest that this unbalanced expression of linear and circular RNAs might alter neural fitness, contributing to HD pathogenesis

    Distribution of circRNAs across different chromosomes in ESC and NPC.

    No full text
    A-B) The bar charts display the percentage of detected circRNAs originating from each chromosome in ESC (A) and NPC (B). Enrichment of circRNAs, using the number of protein-coding genes contained in each chromosome as a background, was computed by a Fisher test and significant p-values are displayed over the graph bars (* (TIFF)</p
    corecore